Uniform Convergence to a Left Invariance on Weakly Compact Subsets

Ali Ghaffari, Samaneh Javadi and Ebrahim Tamimi

 \overline{m}

Sahand Communications in Mathematical Analysis

Print ISSN: 2322-5807 Online ISSN: 2423-3900 Volume: 17 Number: 3 Pages: 81-91

Sahand Commun. Math. Anal. DOI: 10.22130/scma.2019.100548.540 Volume 17, No. 3, July 2020

Print ISSN 2322-5807 Online ISSN 2423-3900

Sahand Communications

Mathematical Analysis

SCMA, P. O. Box 55181-83111, Maragheh, Iran http://scma.maragheh.ac.ir

Sahand Communications in Mathematical Analysis (SCMA) Vol. 17 No. 3 (2020), 81-91 <http://scma.maragheh.ac.ir> DOI: 10.22130/scma.2019.100548.540

Uniform Convergence to a Left Invariance on Weakly Compact Subsets

Ali Ghaffari¹^{*}, Samaneh Javadi², and Ebrahim Tamimi³

ABSTRACT. Let ${a_{\alpha}}_{\alpha \in I}$ be a bounded net in a Banach algebra *A* and φ a nonzero multiplicative linear functional on *A*. In this paper, we deal with the problem of when $||aa_{\alpha} - \varphi(a)a_{\alpha}|| \to 0$ uniformly for all *a* in weakly compact subsets of *A*. We show that Banach algebras associated to locally compact groups such as Segal algebras and L^1 -algebras are responsive to this concept. It is also shown that $Wap(A)$ has a left invariant φ -mean if and only if there exists a bounded net ${a_{\alpha}}_{\alpha \in I}$ in ${a \in A$; $\varphi(a) = 1}$ such that $|a a_{\alpha} - a|$ $\varphi(a)a_{\alpha}$ ^{*|W*} $a_{p}(A) \to 0$ uniformly for all *a* in weakly compact subsets of *A*. Other results in this direction are also obtained.

1. INTRODUCTION

Let *A* be an arbitrary Banach algebra and φ a character of *A*, that is a homomorphism from *A* onto \mathbb{C} . *A* is called φ -amenable if there exists a bounded linear functional *m* on A^* satisfying $\langle m, \varphi \rangle = 1$ and $\langle m, f, a \rangle =$ $\varphi(a)\langle m, f \rangle$ for all $a \in A$ and $f \in A^*$. Approximating *m* in the weak^{*} topology of *A∗∗* and then passing to convex combinations, we obtain a bounded net ${a_{\alpha}}_{\alpha \in I}$ in ${a \in A$; $\varphi(a) = 1}$ such that $\|a a_{\alpha} - \varphi(a) a_{\alpha}\| \to$ 0 far all *a* in *A* [12]. On the other hand, whenever we have a bounded net ${a_{\alpha}}_{\alpha\in I}$ in ${a \in A$; $\varphi(a) = 1}$ such that $\|aa_{\alpha} - \varphi(a)a_{\alpha}\| \to 0$, then each of its weak^{*} accumulation points in A^{**} is a left invariant φ -mean on *A∗* . For more details on *φ*-amenability of a Banach algebra the interested reader is referred to [9, 12, 15]. This concept considerably generalizes the notion of left amenability for Lau algebras. Recently

²⁰¹⁰ *Mathematics Subject Classification.* 46H25; 43H05.

Key words and phrases. Banach algebra, *φ*-amenability, *φ*-means, Weak almost periodic, Weak*[∗]* topology.

Received: 29 December 2018, Accepted: 10 November 2019.

[∗] Corresponding author.

the notion of *α*-amenable hypergroups was introduced and studied in [1, 2, 6]. It is clearly that the net $\{a_{\alpha}\}_{{\alpha \in I}}$ can be chosen in such a way that $||aa_{\alpha} - \varphi(a)a_{\alpha}|| \to 0$ uniformly for all *a* in compact subsets of *A*. The present paper grew out the attempt to extend the uniform convergence to weakly compact subsets of *A*.

We shall investigate that this problem is true over a Segal algebra. It has motivated large parts of this paper. In particular, we shall consider the special case $S(G) = L^1(G)$ and it is shown that this problem is equivalent to the amenability of *G*. Although we are not able to answer for general, we show $Wap(A)$ has a left invariant φ -mean if and only if there exists a bounded net ${a_{\alpha}}_{\alpha \in I}$ in ${a \in A$; $\varphi(a) = 1}$ such that $\|aa_\alpha - \varphi(a)a_\alpha\|_{Wap(A)} \to 0$ uniformly for all *a* in weakly compact subsets of *A*.

2. Notation and Preliminary

In this paper, the second dual *A∗∗* of a Banach algebra *A* will always be equipped with the first Arens product which is defined as follows. For $a, b \in A$, $f \in A^*$ and $m, n \in A^{**}$, the elements $f.a$ and $m.f$ of A^* and $mn \in A^{**}$ are defined by

$$
\langle f.a, b \rangle = \langle f, ab \rangle, \qquad \langle n.f, a \rangle = \langle n, f.a \rangle, \qquad \langle mn, f \rangle = \langle m, n.f \rangle,
$$

respectively. With this multiplication, *A∗∗* is a Banach algebra and *A* is a subalgebra of A^{**} [3]. A functional $f \in A^*$ for which $\{f.a; \|a\| \leq 1\}$ is relatively compact in the weak topology of *A∗* is said to be weakly almost periodic. The set of weakly almost periodic functionals on *A* is denoted by $Wap(A)$ (see [4, 8]).

Recall that a Segal algebra $S(G)$ on a locally compact group G , is a dense left ideal of $L^1(G)$ that satisfies the following conditions:

- (i) $S(G)$ is a Banach space with respect to a norm $\|.\|_S$, called a Segal norm, satisfying $\|\psi\|_1 \le \|\psi\|_S$ for $\psi \in S(G)$, where $\|\cdot\|_1$ denotes the L^1 -norm.
- (ii) For $\psi \in S(G)$ and $y \in G$, $L_y \psi \in S(G)$, where L_y is the left translation operator defined by $L_y\psi(x) = \psi(y^{-1}x), x \in G$. Moreover, the left translation $L_y \psi$, $y \in G$, is continuous in *y* for each $\psi \in S(G)$.
- (iii) The equality $||L_y\psi||_S = ||\psi||_S$ holds for $\psi \in S(G)$, $y \in G$.

Equipped with the norm *∥.∥^S* and the convolution product, denoted by *∗*, *S*(*G*) is a Banach algebra. The inequality $||h * \psi||_S \le ||h||_1 ||\psi||_S$ holds for all $h \in L^1(G)$, and $\psi \in S(G)$. The structure of the Segal algebra has been studied in [17].

Finally, we say that an element *a* of *A* is φ -maximal if it satisfies $||a|| = φ(a) = 1$. Let *P*₁(*A, ϕ*) denote the collection of all *φ*-maximal elements of *A* [11]. When *A* is an Lau algebra and φ is the identity of the von Neumann algebra A^* , the φ -maximal elements are precisely the positive linear functionals of norm 1 on *A∗* and hence span *A*. Let $X(A, \varphi)$ denote the closed linear span of $P_1(A, \varphi)$. Throughout the paper, $\Delta(A)$ will denote the set of all homomorphisms from A onto \mathbb{C} .

3. Main Results

Let *A* be a Banach algebra and let *X* be a closed subspace of *A∗* . We say that *X* is invariant if $f.a \in X$ whenever $f \in X$ and $a \in A$.

Definition 3.1. Let *A* be a Banach algebra and let *X* be a closed subspace of A^* with $\varphi \in X$ that is invariant. A continuous functional m on *X* is called a left invariant φ -mean on *X* if the following properties hold:

$$
\langle m, \varphi \rangle = 1, \qquad \langle m, f.a \rangle = \varphi(a) \langle m, f \rangle, \quad (f \in X, a \in A)
$$

Definition 3.2. A net $\{a_{\alpha}\}_{{\alpha \in I}}$ in $\{a \in A; \varphi(a) = 1\}$ is said to converges strongly to a left invariance uniformly on weakly compact subsets of *A* if for every weakly compact set $C \subseteq A$, $\|aa_{\alpha} - \varphi(a)a_{\alpha}\| \to 0$ uniformly for all $a \in C$.

In the following, $P_1((S(G), \|\cdot\|_1), 1)$ denotes the collection of all 1maximal elements of a Segal algebra $S(G)$ with respect to L^1 -norm.

Theorem 3.3. *Let G be a locally compact group. Then the following statements are equivalent:*

- (i) *There is a net* $\psi_{\alpha} \in P_1((S(G), \|\cdot\|_1), 1)$ *such that* $\|\psi * \psi_{\alpha} \psi_{\alpha} \|_{S} \to 0$ *for each* $\psi \in P_1((S(G), \| \| \|_1), 1)$ *.*
- (ii) *There is a net* $\psi_{\alpha} \in P_1((S(G), \|\cdot\|_1), 1)$ *such that for each weakly compact subset* $C \subseteq P_1((S(G), \|\cdot\|_1), 1), \ \|\psi * \psi_\alpha - \psi_\alpha\|_S \to 0$ *uniformly for all* $\psi \in C$ *.*
- *Proof.* (*ii*) implies (*i*): This is because the finite subsets in $P_1((S(G), \|\cdot\|_1), 1)$ are weakly compact.
	- (*i*) implies (*ii*): Let $\{\psi_{\alpha}\}_{{\alpha \in I}} \subseteq P_1((S(G), \|\cdot\|_1), 1)$ be as in (*i*). By definition $\|\psi\|_1 \le \|\psi\|_S$ for all $\psi \in S(G)$, and so $\|\psi * \psi_\alpha \psi_{\alpha}$ $||_1 \to 0$ *for each* $\psi \in P_1((S(G), ||.||_1), 1)$. We can assume that ψ_{α} is left equicontinuous (that is, given $\epsilon > 0$, there is some neighborhood *U* of the identity in *G* such that $\|\delta_x * \psi_\alpha - \psi_\alpha\|_1 < \epsilon$ for any α and $x \in U$) otherwise replace ψ_{α} by $\psi * \psi_{\alpha}$ where ψ is a fixed element in $P_1((S(G), \|\cdot\|_1), 1)$. We claim that for every weakly compact subset *C* of $P_1((S(G), \|\cdot\|_1), 1)$ and $\epsilon \in (0, 1)$, there exists α_0 such that $\|\psi * \psi_\alpha - \psi_\alpha\|_1 < \epsilon$ for all $\alpha \succeq \alpha_0$ and $\psi \in C$. Let ψ_0 be a fixed element in $P_1((S(G), \|\cdot\|_1), 1)$. For

the forward implication, note that the weak topology on $S(G)$ is finer than the relative weak topology on $S(G)$ inherited from $L^1(G)$. By Theorem 4.21.2 in [5], there exists a compact set *K* in *G* such that $\int_{G \setminus K} \psi(x) dx < \frac{\epsilon}{4 \|\psi_o\|_S}$ for all $\psi \in C$. By the above $\alpha_0 \in I$ such that $\|\delta_x * \psi_\alpha - \psi_\alpha\|_1 < \frac{\epsilon}{2\|\psi_\alpha\|_1}$ 2 $\|\psi_o\|_S$ for all $\alpha \succeq \alpha_0$ and $x \in K$ (see Proposition 6.7 in [16]). For each $\alpha \succeq \alpha_0$ and $\psi \in C$, we have

$$
\begin{aligned}\n\|\psi * \psi_{\alpha} - \psi_{\alpha}\|_{1} &= \int \left| \int \psi_{\alpha}(y^{-1}x)\psi(y)dy - \psi_{\alpha}(x) \right| dx \\
&\leq \int \left| \int_{K} (\psi_{\alpha}(y^{-1}x) - \psi_{\alpha}(x))\psi(y)dy \right| dx \\
&+ \int \int_{G\backslash K} |\psi_{\alpha}(y^{-1}x) - \psi_{\alpha}(x)|\psi(y)dy dx \\
&< \frac{\epsilon \int_{K} \psi(y)dy}{2\|\psi_{o}\|_{S}} + 2 \int_{G\backslash K} \psi(y)dy \int \psi_{\alpha}(x)dx \\
&< \frac{\epsilon}{\|\psi_{o}\|_{S}}.\n\end{aligned}
$$

Let us define $\phi_{\alpha} = \psi_{\alpha} * \psi_{0}$. For each $\alpha \succeq \alpha_{0}$ and $\psi \in C$, we have

$$
\begin{aligned} \|\psi * \phi_{\alpha} - \phi_{\alpha}\|_{S} &= \|\psi * \psi_{\alpha} * \psi_{0} - \psi_{\alpha} * \psi_{0}\|_{S} \\ &\leq \|\psi * \psi_{\alpha} - \psi_{\alpha}\|_{1} \|\psi_{o}\|_{S} \\ &<\epsilon. \end{aligned}
$$

Let *G* be a locally compact group with left Haar measure and consider the convolution algebra $L^1(G)$ [7]. Note that the group algebra $L^1(G)$ is amenable with respect to the trivial character 1 precisely when *G* is amenable [10]. The preceding proposition shows that if *G* is an amenable locally compact group, then $L^1(G)$ has a bounded net which converges strongly to a left invariance uniformly on weakly compact subsets of $L^1(G)$.

As a straightforward application of our main result, we have the following result:

Corollary 3.4. *Let G be a locally compact group. Then the following statements are equivalent:*

- (i) *There is a net* $\psi_{\alpha} \in P_1(L^1(G), 1)$ *such that* $\|\psi * \psi_{\alpha} \psi_{\alpha}\|_1 \to 0$ $for each \psi \in P_1(L^1(G), 1), i.e. \ G \ is \ amenable;$
- (ii) *There is a net* $\psi_{\alpha} \in P_1(L^1(G), 1)$ *such that for each weakly com-* $\text{pact subset } C \subseteq L^1(G)$, $\|\psi * \psi_\alpha - \int \psi(x) dx \psi_\alpha\|_1 \to 0$ *uniformly for all* $\psi \in C$ *.*

Proof. As $L^1(G)$ is a Segal algebra, this is just a re-statement of Theorem 3.3. \Box

Let *A* be an arbitrary Banach algebra. It remains an open question, to the author's knowledge, whether the existence of a bounded net ${a_{\alpha}}_{\alpha \in I}$ in *A* which converges strongly to a left invariance uniformly on weakly compact subsets of *A* is equivalent to $||aa_{\alpha} - \varphi(a)a_{\alpha}|| \to 0$ for each $a \in A$. We show this is the case for,

 $||a||_{Wap(A)} = \sup \{ |\langle f, a \rangle| : f \in Wap(A), ||f|| \leq 1 \}, (a \in A)$

The reason why we are interested in $Wap(A)$ is the following:

Theorem 3.5. *Let A be a Banach algebra with a bounded approximate identity and* $\varphi \in \Delta(A)$ *. Then the following statements are equivalent:*

- (i) *There exists a bounded net* $\{a_{\alpha}\}_{{\alpha \in I}}$ *in* $\{a \in A; \varphi(a) = 1\}$ *such that* $\|aa_{\alpha} - \varphi(a)a_{\alpha}\|_{Wap(A)} \to 0$ *for each* $a \in A$ *;*
- (ii) *There exists a bounded net* $\{a_{\alpha}\}_{{\alpha \in I}}$ *in* $\{a \in A; \varphi(a) = 1\}$ *such that for each weakly compact subset* $C \subseteq A$, $\|aa_\alpha - \varphi(a)a_\alpha\|_{Wap(A)}$ \rightarrow 0 *uniformly for all* $a \in C$ *.*

Proof. By the Banach Alaoghlu's Theorem [18], without loss of generality we may assume that $a_{\alpha} \to m$ in the weak^{*} topology of A^{**} . Then $\langle m, f, a \rangle = \varphi(a) \langle m, f \rangle$, for all $f \in Wap(A), a \in A$ [12]. Let $T_f: A \mapsto A^*$ be a bounded linear mapping specified by $T_f(a) = f.a$. Define the map $\kappa_A : A^* \longrightarrow B(A, A^*)$ by $\kappa_A(f) = T_f$. Take $f \in Wap(A)$ and consider ${a_{\alpha} f}_{\alpha \in I}$. The corresponding net ${T_{a_{\alpha} f}}_{\alpha \in I}$ converges to T_{mf} in the weak operator topology. This is immediate from the fact that the weak topology and weak*∗* topology coincide on weak closure $\overline{\{a.f : ||a|| \le ||m||\}}$ of $\{a.f : ||a|| \le ||m||\}$. The equicontinuity of ${T_{a} f}_{\alpha \in I}$ is now an exercise in functional analysis. Let *C* be any weakly compact subset of *A*. *C* is weakly bounded, and so *C* is norm bounded (see Theorem 3.18 in [18]). Let $M = \sup \{||c|| : c \in C\}$. The net ${T_{a} f}_{\alpha \in I}$ converges uniformly to $T_{m} f$ in the weak operator topology on *C*. This latter fact is crucial for our argument, so we give a proof.

Let *W* be a weak neighborhood of zero in *A∗* . Choose a weak neighborhood *V* of zero in A^* such that $V + V + V \subseteq W$ and a symmetric weak neighborhood *U* of zero in *A* such that $T_{a_{\alpha} f}(U) \subseteq V$ for all $\alpha \in I$ and $T_{mf}(U) \subseteq V$. *C* is weakly compact, and therefore $C \subseteq S_0 + U$ for some finite set $S_0 = \{a_1, a_2, \ldots, a_n\}$. It is a routine matter to see that there exists $\alpha_0 \in I$ such that $T_{a_{\alpha}f}(a_i) - T_{mf}(a_i) \in V$ for all $\alpha \succeq \alpha_0$ and $a_i \in S_0$. For $\alpha \succeq \alpha_0$ and $a \in C$, we have

$$
(T_{a_{\alpha}f} - T_{mf})(a) \in \bigcup_{i=1}^{n} (T_{a_{\alpha}f} - T_{mf})(a_i) + (T_{a_{\alpha}f} - T_{mf})(U)
$$

$$
\subseteq \bigcup_{i=1}^{n} (T_{a_{\alpha}f} - T_{mf})(a_i) + T_{a_{\alpha}f}(U) - T_{mf}(U)
$$

\n
$$
\subseteq V + V + V \subseteq W.
$$

By the above argument, for any given $\epsilon > 0$ and any $n \in A^{**}$, there exists $\alpha_0 \in I$ such that

$$
|\langle n, T_{a_{\alpha}f}(a) - T_{mf}(a)\rangle| < \frac{\epsilon}{2}.
$$

for all $\alpha \succeq \alpha_0$ and $a \in C$. On the other hands, A has an approximate identity ${e_{\alpha}}_{\alpha \in I}$. Any weak^{*}-lim *E* of ${e_{\alpha}}_{\alpha \in I}$ is a right identity of Banach algebra A^{**} . Hence for all $\alpha \succeq \alpha_0$ and $a \in C$,

$$
|\langle aa_{\alpha} - am, f \rangle| = |\langle a_{\alpha} f - mf, a \rangle|
$$

= $|\langle E, a_{\alpha} f.a - mf. a \rangle|$
< $\leq \frac{\epsilon}{2}.$

We also have $|\langle a_{\alpha}, f \rangle - \langle m, f \rangle| < \frac{\epsilon}{2M}$ for all $\alpha \succeq \alpha_0$. Consequently

$$
|\langle aa_{\alpha} - \varphi(a)a_{\alpha}, f \rangle| \leq |\langle aa_{\alpha} - am, f \rangle| + |\varphi(a)| |\langle m, f \rangle - \langle a_{\alpha}, f \rangle|
$$

< ϵ .

This means that $aa_{\alpha} - \varphi(a)a_{\alpha} \longrightarrow 0$ uniformly in the weak topology of $Wap(A)$ for all $a \in C$. An argument similar to that in the proof of Theorem 1.2 in [12] shows that we can find a bounded net ${u_{\alpha}}_{\alpha\in I}$ consisting of convex combination of elements in ${a_{\alpha}}_{\alpha\in I}$ such that $||au_{\alpha} - \varphi(a)u_{\alpha}||_{Wap(A)} \to 0$ uniformly for all $a \in C$. □

A special interesting case is that there exists a left invariant φ -mean on *A∗* . We obtain:

Theorem 3.6. *Let* $\{a_{\alpha}\}_{{\alpha \in I}}\}$ *be a bounded net in* $\{a \in A; \varphi(a) = 1\}$ *which converges strongly to a left invariance uniformly on weakly compact subsets of A and let m be a left invariant* φ *-mean on* A^* *. Then there* is a net ${b_{\beta}}_{\beta \in J}$ in ${a \in A$; $\varphi(a) = 1}$ such that $b_{\beta} \to m$ in the weak* *topology and* ${b_{\beta}}_{\beta \in J}$ *converges strongly to a left invariance uniformly on weakly compact subsets of A.*

Proof. Let such a net $\{a_{\alpha}\}_{{\alpha \in I}}$ exists. Choose a net $\{b_{\beta}\}_{{\beta \in J}}$ in *A* with the property that $b_{\beta} \to m$ in the weak^{*} topology of A^{**} and $||b_{\beta}|| \leq ||m||$ for all $\beta \in J$ [18]. Since $\langle b_{\beta}, \varphi \rangle \rightarrow \langle m, \varphi \rangle = 1$, after passing to a subnet and replacing b_{β} by $\frac{1}{\varphi(b_{\beta})}b_{\beta}$, we can assume that $\varphi(b_{\beta}) = 1$ and $||b_{\beta}|| \leq ||m|| + 1$ for all $\beta \in J$. For each (α, f) in the product directed set $I \times \prod \{J; \alpha \in I\}$, we define $R(\alpha, f) = (\alpha, f(\alpha))$, $\alpha \in I, f \in$ $\prod \{J; \alpha \in I\}$ and let $S(\alpha, \beta) = a_{\alpha}b_{\beta}$. The iterated limit $\lim_{\alpha} \lim_{\beta} a_{\alpha}b_{\beta}$

(in the weak*∗* topology of *A∗∗*) exists and is equal to *m*. Indeed, for *f ∈ A∗*

$$
\lim_{\beta} \langle f, a_{\alpha} b_{\beta} \rangle = \lim_{\beta} \langle f a_{\alpha}, b_{\beta} \rangle
$$

$$
= \lim_{\beta} \langle b_{\beta}, f a_{\alpha} \rangle
$$

$$
= \langle m, f a_{\alpha} \rangle
$$

$$
= \langle m, f \rangle.
$$

By the Iterated Limit Theorem, see p.69 in [13],

$$
\lim_{(\alpha,f)} SoR(\alpha,f) = \lim_{(\alpha,f)} a_{\alpha}b_{f(\alpha)}
$$

$$
= m
$$

in the weak^{*} topology of A^{**} (with respect to (α, f)). It remains to show that $SoR(\alpha, f)$ converges strongly to a left invariance uniformly on weakly compact subsets *C* of *A*. Let $\epsilon > 0$ be given. For every weakly compact subset *C* of *A*, there exists $\alpha_0 \in I$ such that $\|a a_\alpha - \varphi(a) a_\alpha\|$ $\frac{\epsilon}{\|m\|+1}$ for all $\alpha \succeq \alpha_0$ and $a \in C$. If $\alpha \succeq \alpha_0$ and $a \in C$, then

$$
||aSoR(\alpha, f) - \varphi(a)SoR(\alpha, f)|| = ||aa_{\alpha}b_{f(\alpha)} - \varphi(a)a_{\alpha}b_{f(\alpha)}||
$$

\n
$$
\leq ||aa_{\alpha} - \varphi(a)a_{\alpha}||(||m|| + 1)
$$

\n
$$
< \epsilon.
$$

This completes the proof.

Proposition 3.7. *Let A be a Banach algebra and* $\varphi \in \Delta(A)$ *. Then the following statements are equivalent:*

- (i) There exists a net $\{a_{\alpha}\}_{{\alpha}\in I}$ in $\{a\in A; \varphi(a)=1\}$ such that $\{a_{\alpha}\}_{{\alpha}\in I}$ *converges to some left invariant* φ *-mean* m *with* $||m|| = 1$ *in the weak^{*}* topology and $\{a_{\alpha}\}_{\alpha \in I}$ converges strongly to a left invari*ance uniformly on weakly compact subsets of A;*
- (ii) *For every weakly compact subset* C *of* A *and* $\epsilon > 0$ *,*

inf {sup { $||ca||$; $c \in C$ }, $\varphi(a) = 1$, $||a|| \leq 1 + \epsilon$ } $\leq (1+\epsilon)$ sup { $|\varphi(c)|$; $c \in C$ };

- (iii) *There exists a net* ${a_{\alpha}}_{\alpha \in I}$ *in A with the following properties:* $\varphi(a_{\alpha}) = 1$ *for all* $\alpha \in I$ *,* $||a_{\alpha}|| \to 1$ *and* $\lim_{\alpha} ||a a_{\alpha}|| = |\varphi(a)|$ *uniformly on weakly compact subsets of A.*
- *Proof.* (*i*) implies (*ii*): Let *C* be a weakly compact subset of *A*, $\epsilon > 0$ and let $\delta > 0$ be given. By hypothesis there exists $\alpha_0 \in I$ such that $||ca_{\alpha} - \varphi(c)a_{\alpha}|| < \delta, ||a_{\alpha}|| \leq 1 + \epsilon$ for all $\alpha \succeq \alpha_0$ and $c \in C$. Thus for every $c \in C$,

$$
||ca_{\alpha_0}|| \leq |\varphi(c)| ||a_{\alpha_0}|| + \delta
$$

<
$$
< (1 + \epsilon) |\varphi(c)| + \delta.
$$

$$
\qquad \qquad \Box
$$

Since $\delta > 0$ may be chosen arbitrarily, the property holds.

(*ii*) implies (*i*): We claim that for every weakly compact subset *C* of *A* and $\epsilon > 0$, there exists $a_{C,\epsilon}$ such that $\varphi(a_{C,\epsilon}) = 1$, $\|a_{C,\epsilon}\|$ ≤ 1 + ϵ and $\|ca_{C,\epsilon} - \varphi(c)a_{C,\epsilon}\|$ < ϵ for all $c \in C$. Choose $\delta > 0$ such that $(1 + \delta)^2 < 1 + \epsilon$. Take $b_{C,\epsilon} \in A$ such that $\varphi(b_{C,\epsilon}) = 1$ and $||b_{C,\epsilon}|| \leq 1 + \delta$. Obviously

{c − φ(*c*)*bC,ϵ*; *c ∈ C} ∪ {cbC,ϵ − c*; *c ∈ C}*

is weakly compact and also $\varphi(c - \varphi(c)b_{C,\epsilon}) = \varphi(cb_{C,\epsilon} - c) = 0$ for all $c \in C$. By assumption, there exists $a_{C,\epsilon}' \in A$ with $||a_{C,\epsilon}'|| \leq 1+\delta, \varphi(a_{C,\epsilon}') = 1$ such that $|| (c - \varphi(c)b_{C,\epsilon}') a_{C,\epsilon}' || < \frac{\epsilon}{2}$ $\overline{2}$ and $||cb_{C,\epsilon}a_{C,\epsilon}' - ca_{C,\epsilon}'|| < \frac{\epsilon}{2}$ $\frac{\epsilon}{2}$ for all $c \in C$. Put $a_{C,\epsilon} = b_{C,\epsilon} a_{C,\epsilon}'$. Thus $||a_{C,\epsilon}|| = ||b_{C,\epsilon}a_{C,\epsilon}'|| \leq (1+\delta)^2 \leq 1+\epsilon$ and $\varphi(a_{C,\epsilon}) = 1$. For every $c \in C$, we have

$$
||ca_{C,\epsilon} - \varphi(c)a_{C,\epsilon}|| = ||cb_{C,\epsilon}a_{C,\epsilon}' - \varphi(c)b_{C,\epsilon}a_{C,\epsilon}'||
$$

\n
$$
\leq ||cb_{C,\epsilon}a_{C,\epsilon}' - ca_{C,\epsilon}'|| + ||ca_{C,\epsilon}' - \varphi(c)b_{C,\epsilon}a_{C,\epsilon}'||
$$

\n
$$
< \epsilon.
$$

Now, order the pairs (C, ϵ) , $C \subseteq A$ weakly compact, $\epsilon > 0$, in the obvious manner, and let *m* be a weak*∗* cluster point of the net ${a_{C,\epsilon}}$ in *A*. Then $||m|| \leq 1$, $\langle m, \varphi \rangle = 1$ and hence $||m|| = 1$. So ${a_{C,\epsilon}}_{C,\epsilon}$ is the required net.

(*iii*) implies (*ii*): Let $\epsilon > 0$ and let C be a weakly compact subset of *A*. For every $\delta > 0$, there exists $\alpha_0 \in I$ such that $|||ca_{\alpha}|| |\varphi(c)| < \delta$ and $||a_{\alpha}|| \leq 1 + \epsilon$ for every $\alpha \succeq \alpha_0$ and $c \in C$. Then

$$
\inf \{ \sup \{ ||ca||; c \in C \}, \varphi(a) = 1, ||a|| \le 1 + \epsilon \} \n\le \inf \{ \sup \{ ||ca_{\alpha}||; c \in C \}, \alpha \in I \} \n\le (1 + \epsilon) \sup \{ |\varphi(c)|; c \in C \} + \delta.
$$

Since $\delta > 0$ may be chosen arbitrarily, the property holds.

(*i*) implies (*iii*): By hypothesis there exists a net $\{a_{\alpha}\}_{{\alpha \in I}}$ in *A* such that $\varphi(a_{\alpha}) = 1$ for all $\alpha \in I$, $||a_{\alpha}|| \to 1$ and $||aa_{\alpha} - \varphi(a)a_{\alpha}|| \to 0$ uniformly on weakly compact subsets of A. Let $\epsilon > 0$ and let C be a weakly compact subset of *A*. Since *C* is a weakly compact subset of *A*, *C* is weakly bounded and so $\{|\varphi(c)|; c \in C\}$ is bounded [18]. Let $k = \sup\{|\varphi(c)|; c \in C\}$. For every $\alpha \in I$ and $c \in C$, we have

$$
|\|aa_{\alpha}\| - |\varphi(a)|| \le |||aa_{\alpha}\| - |\varphi(a)| \|a_{\alpha}\| + |\varphi(a)| \|a_{\alpha}\| - 1|
$$

$$
\le ||aa_{\alpha} - \varphi(a)a_{\alpha}\| + k||a_{\alpha}\| - 1|.
$$

This shows that $\lim_{\alpha} ||aa_{\alpha}|| = |\varphi(a)|$ uniformly on weakly compact subsets of *A*.

Let *A* be a Lau algebra. The identity of *A∗* will be denoted by *e*. Also $P(A)$ will denote the cone of all positive functionals in *A* and $P_1(A)$ will denote the set of all $f \in P(A)$ such that $f(e) = 1$. Lau in [14] proved that *A* is left amenable if and only if there exists a net $f_\alpha \in P_1(A)$ such that $\lim_{\alpha} ||f.f_{\alpha}|| = |f(e)|$ for each $f \in A$. Note that a Banach algebra A^{**} has a left invariant φ -mean if any one of the conditions in Proposition 1 hold.

Definition 3.8. Let *A* be a Banach algebra and let *Z* be a compact convex subset of a locally convex Hausdorff topological vector space *E*. The pair (*A, Z*) is called a *flow*, if;

- (i) There exists a map $\rho: A \times E \to E$ such that for each $z \in Z$, the map $\rho(-, z) : A \to E$ is continuous and linear when A has the weak topology;
- (ii) For any $a, b \in A$ and $z \in Z$, $\rho(a, \rho(b, z)) = \rho(ab, z)$.

If $\varphi \in \Delta(A)$, we say that *Z* is $P_1(A, \varphi)$ -invariant under ρ if $\rho(a, z) \in$ *Z* for any $a \in P_1(A, \varphi)$ and $z \in Z$. In this case ρ induces a map $\rho: P_1(A, \varphi) \times Z \to Z$ of $P_1(A, \varphi)$ on the compact convex subset *Z* (as affine maps now).

Theorem 3.9. *Let A be a Banach algebra and* $\varphi \in \Delta(A)$ *. Among the following two properties, the implication* $(i) \rightarrow (ii)$ *hold.* If $X(A, \varphi) = A$, *then* $(ii) \rightarrow (i)$ *.*

- (i) *There exists a left invariant* φ *-mean m in* $\overline{P_1(A,\varphi)}^{w^*}$;
- (ii) *Every flow* (A, Z) *admits a* $P_1(A, \varphi)$ *-invariant element* $z \in Z$ *, that is, for all* $a \in P_1(A, \varphi)$, $\rho(a, z) = z$.

Proof. Assume that A^{**} has a left invariant φ -mean $m \in \overline{P_1(A, \varphi)}^{w^*}$. Let *Z* be a compact convex subset of a locally convex Hausdorff topological vector space *E* and let (A, Z) be a flow. If $f \in E^*$ and $z \in Z$, we may define a functional f^z on \overline{A} by putting $\langle f^z, a \rangle = \langle f, \rho(a, z) \rangle$, $a \in \overline{A}$. Since the map $a \mapsto \rho(a, z)$ is continuous, we have $f^z \in A^*$. We embed *E* into the algebric dual $(E^*)'$ of E^* with the topology $\sigma((E^*)', E^*)$. If Λ is a $\sigma((E^*)', E^*)$ -cluster point of *Z*, then there exists a net $\{z_\alpha\}_{\alpha \in I}$ in *Z* such that $z_{\alpha} \to \Lambda$ in the $\sigma((E^*)', E^*)$ -topology. Since *Z* is compact in *E*, without loss of generality, we may assume that $z_{\alpha} \to z$ for some $z \in Z$. For every $f \in E^*$, we have $\langle z_\alpha, f \rangle \to \langle \Lambda, f \rangle$ and also $\langle f, z_\alpha \rangle \to \langle f, z \rangle$. We conclude that $\Lambda = z \in Z$, and so *Z* is a closed subset in $(E^*)'$.

Let z_0 be a fixed element in *Z* and let $n \in \overline{P_1(A, \varphi)}^{w^*}$. Define Λ_n : $E^* \to \mathbb{C}$ by $\Lambda_n(f) = \langle n, f^{z_0} \rangle$. It is easily checked that Λ_n is linear, and so $\Lambda_n \in (E^*)'$. Define $\Lambda : \overline{P_1(A,\varphi)}^{w^*} \to (E^*)'$ by $\Lambda(n) = \Lambda_n$. The

□

mapping Λ from $\overline{P_1(A,\varphi)}^{w^*}$ equipped with the weak^{*} topology into $(E^*)'$ equipped with the $\sigma((E^*)', E^*)$ -topology is continuous. In particular, if $a \in P_1(A, \varphi)$, $P_1(A, \varphi)$ -invariance of *Z* imply that $\Lambda(a) = \Lambda_a \in \mathbb{Z}$. Indeed, $\Lambda_a = \rho(a, z_0)$. Since $P_1(A, \varphi)$ is weak^{*} dense in $\overline{P_1(A, \varphi)}^{w^*}$ and *Z* is closed in $(E^*)'$, we conclude that $\Lambda_m \in Z$. We shall show that Λ_m is the required fixed point. Let $a \in P_1(A, \varphi)$ and $f \in E^*$. We consider the mapping $\rho_a: Z \to Z$ defined by $\rho_a(z) = \rho(a, z)$. We have

$$
\langle f, \Lambda_m \rangle = \langle m, f^{z_0} \rangle
$$

= $\langle m, f^{z_0} a \rangle$
= $\langle m, (f \circ \rho_a)^{z_0} \rangle$
= $\langle f \circ \rho_a, \Lambda_m \rangle$
= $\langle f, \rho(a, \Lambda_m) \rangle$.

This shows that $\rho(a,\Lambda_m) = \Lambda_m$, that is, Λ_m is a fixed point under the map *ρ*.

Conversely, assume (*ii*). Let $E = A^{**}$ with weak^{*} topology and $Z =$ $\overline{P_1(A,\varphi)}^{w^*}$. By the Banach-Alaoglu's theorem [18], *Z* is weak^{*} compact. Define a map ρ of $A \times A^{**}$ into A^{**} by $\rho(a, p) = ap$ for each $a \in A$ and $p \in A^{**}$. Let *p* be a fixed element in A^{**} and let $\{a_{\alpha}\}_{{\alpha \in I}}$ be a net in *A* converging to $a \in A$ in the weak topology of A . Then, for $f \in A^*$,

$$
\lim_{\alpha} \langle a_{\alpha}p, f \rangle = \lim_{\alpha} \langle a_{\alpha}, pf \rangle
$$

=
$$
\lim_{\alpha} \langle pf, a_{\alpha} \rangle
$$

=
$$
\langle pf, a \rangle
$$

=
$$
\langle ap, f \rangle.
$$

This shows that the mapping $a \mapsto \rho(a, p)$ is continuous. By hypothesis there exists $m \in Z = \overline{P_1(A, \varphi)}^{w^*}$ that is fixed under the map ρ , that is, for every $a \in P_1(A, \varphi)$, $am = m$. Hence *m* is a left invariant φ -mean. \square

REFERENCES

- 1. A. Azimifard, *α-amenable hypergroups*, Math. Z., 265 (2010), pp. 971-982.
- 2. A. Azimifard, *On the α-amenability of hypergroups*, Monatsh Math., 115 (2008), pp. 1-13.
- 3. H.G. Dales, *Banach algebra and automatic continuity*, London Math. Soc. Monogr. Ser. Clarendon Press, 2000.
- 4. J. Duncan and S.A.R. Hosseiniun, *The second dual of a Banach algebra*, Proc. Roy. Soc. Edinburgh Sect. A, 84 (1979), pp. 309- 325.
- 5. R.E. Edwards, *Functional analysis*, New-York, Holt, Rinehart and Winston, 1965.
- 6. F. Filbir, R. Lasser, and R. Szwarc, *Reiter's condition P*¹ *and approximate identities for hypergroups*, Monatsh Math., 143 (2004), pp. 189-203.
- 7. G.B. Folland, *A course in abstract harmonic analysis*, CRC Press, Boca Raton, FL, 1995.
- 8. A. Ghaffari, *Strongly and weakly almost periodic linear maps on semigroup algebras*, Semigroup Forum, 76 (2008), pp. 95-106.
- 9. Z. Hu, M.S. Monfared, and T. Traynor, *On character amenable Banach algebras*, Studia Math., 193 (2009), pp. 53-78.
- 10. B.E. Johnson, *Cohomology in Banach algebras*, Mem. Amer. Math. Soc., 127 (1972).
- 11. E. Kaniuth, A.T. Lau, and J. Pym, *On character amenability of Banach algebras*, J. Math. Anal. Appl., 344 (2008), pp. 942-955.
- 12. E. Kaniuth, A.T. Lau and J. Pym, *On φ-amenability of Banach algebras*, Math. Proc. Cambridge Philos. Soc., 144 (2008), pp. 85– 96.
- 13. J.L. Kelley, *General topology*, Van Nostrand, Princeton, N. J., 1955.
- 14. A.T. Lau, *Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups*, Fund. Math., 118 (1983), pp. 161-175.
- 15. M.S. Monfared, *Character amenability of Banach algebras*, Math. Proc. Camb. Phil. Soc., 144 (2008), pp. 697-706.
- 16. J.P. Pier, *Amenable locally compact groups*, John Wiley And Sons, New York, 1984.
- 17. H. Reiter, *L* 1 *-algebras and Segal Algebras,* Lecture Notes in Mathematics, Vol. 231, Springer-Verlag, Berlin/ New York, 1971.
- 18. W. Rudin, *Functional analysis*, McGraw Hill, New York, 1991.

¹ DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF SEMnan, P.O.Box 35195-363, Semnan, Iran.

E-mail address: aghaffari@semnan.ac.ir

² Faculty of Engineering- East Guilan, University of Guilan, P. O. Box 44891-63157, Rudsar, Iran.

E-mail address: s.javadi62@gmail.com

³ Department of Mathematics, Faculty of Science, University of Semnan, P.O.Box 35195-363, Semnan, Iran.

E-mail address: e.tamimi@semnan.ac.ir