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Uniform Convergence to a Left Invariance on Weakly

Compact Subsets

Ali Ghaffari1∗, Samaneh Javadi2, and Ebrahim Tamimi3

Abstract. Let {aα}α∈I be a bounded net in a Banach algebra A
and φ a nonzero multiplicative linear functional on A. In this paper,
we deal with the problem of when ∥aaα − φ(a)aα∥ → 0 uniformly
for all a in weakly compact subsets of A. We show that Banach
algebras associated to locally compact groups such as Segal algebras
and L1-algebras are responsive to this concept. It is also shown
that Wap(A) has a left invariant φ-mean if and only if there exists
a bounded net {aα}α∈I in {a ∈ A; φ(a) = 1} such that ∥aaα −
φ(a)aα∥Wap(A) → 0 uniformly for all a in weakly compact subsets
of A. Other results in this direction are also obtained.

1. Introduction

Let A be an arbitrary Banach algebra and φ a character of A, that is
a homomorphism from A onto C. A is called φ-amenable if there exists a
bounded linear functional m on A∗ satisfying ⟨m,φ⟩ = 1 and ⟨m, f.a⟩ =
φ(a)⟨m, f⟩ for all a ∈ A and f ∈ A∗. Approximating m in the weak∗

topology of A∗∗ and then passing to convex combinations, we obtain a
bounded net {aα}α∈I in {a ∈ A; φ(a) = 1} such that ∥aaα−φ(a)aα∥ →
0 far all a in A [12]. On the other hand, whenever we have a bounded
net {aα}α∈I in {a ∈ A; φ(a) = 1} such that ∥aaα − φ(a)aα∥ → 0, then
each of its weak∗ accumulation points in A∗∗ is a left invariant φ-mean
on A∗. For more details on φ-amenability of a Banach algebra the
interested reader is referred to [9, 12, 15]. This concept considerably
generalizes the notion of left amenability for Lau algebras. Recently
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the notion of α-amenable hypergroups was introduced and studied in
[1, 2, 6]. It is clearly that the net {aα}α∈I can be chosen in such a
way that ∥aaα − φ(a)aα∥ → 0 uniformly for all a in compact subsets
of A. The present paper grew out the attempt to extend the uniform
convergence to weakly compact subsets of A.

We shall investigate that this problem is true over a Segal algebra. It
has motivated large parts of this paper. In particular, we shall consider
the special case S(G) = L1(G) and it is shown that this problem is
equivalent to the amenability of G. Although we are not able to answer
for general, we show Wap(A) has a left invariant φ-mean if and only
if there exists a bounded net {aα}α∈I in {a ∈ A; φ(a) = 1} such that
∥aaα−φ(a)aα∥Wap(A) → 0 uniformly for all a in weakly compact subsets
of A.

2. Notation and Preliminary

In this paper, the second dual A∗∗ of a Banach algebra A will always
be equipped with the first Arens product which is defined as follows.
For a, b ∈ A, f ∈ A∗ and m,n ∈ A∗∗, the elements f.a and m.f of A∗

and mn ∈ A∗∗ are defined by

⟨f.a, b⟩ = ⟨f, ab⟩, ⟨n.f, a⟩ = ⟨n, f.a⟩, ⟨mn, f⟩ = ⟨m,n.f⟩,

respectively. With this multiplication, A∗∗ is a Banach algebra and A is
a subalgebra of A∗∗ [3]. A functional f ∈ A∗ for which {f.a; ∥a∥ ≤ 1}
is relatively compact in the weak topology of A∗ is said to be weakly
almost periodic. The set of weakly almost periodic functionals on A is
denoted by Wap(A) (see [4, 8]).

Recall that a Segal algebra S(G) on a locally compact group G, is a
dense left ideal of L1(G) that satisfies the following conditions:

(i) S(G) is a Banach space with respect to a norm ∥.∥S , called a
Segal norm, satisfying ∥ψ∥1 ≤ ∥ψ∥S for ψ ∈ S(G), where ∥.∥1
denotes the L1-norm.

(ii) For ψ ∈ S(G) and y ∈ G, Lyψ ∈ S(G), where Ly is the left
translation operator defined by Lyψ(x) = ψ(y−1x), x ∈ G.
Moreover, the left translation Lyψ, y ∈ G, is continuous in y
for each ψ ∈ S(G).

(iii) The equality ∥Lyψ∥S = ∥ψ∥S holds for ψ ∈ S(G), y ∈ G.

Equipped with the norm ∥.∥S and the convolution product, denoted by
∗, S(G) is a Banach algebra. The inequality ∥h∗ψ∥S ≤ ∥h∥1∥ψ∥S holds
for all h ∈ L1(G), and ψ ∈ S(G). The structure of the Segal algebra has
been studied in [17].

Finally, we say that an element a of A is φ-maximal if it satisfies
∥a∥ = φ(a) = 1. Let P1(A,φ) denote the collection of all φ-maximal
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elements of A [11]. When A is an Lau algebra and φ is the identity
of the von Neumann algebra A∗, the φ-maximal elements are precisely
the positive linear functionals of norm 1 on A∗ and hence span A. Let
X(A,φ) denote the closed linear span of P1(A,φ). Throughout the
paper, ∆(A) will denote the set of all homomorphisms from A onto C.

3. Main Results

Let A be a Banach algebra and let X be a closed subspace of A∗. We
say that X is invariant if f.a ∈ X whenever f ∈ X and a ∈ A.

Definition 3.1. Let A be a Banach algebra and let X be a closed
subspace of A∗ with φ ∈ X that is invariant. A continuous functional m
on X is called a left invariant φ-mean on X if the following properties
hold:

⟨m,φ⟩ = 1, ⟨m, f.a⟩ = φ(a)⟨m, f⟩, (f ∈ X, a ∈ A)

Definition 3.2. A net {aα}α∈I in {a ∈ A; φ(a) = 1} is said to con-
verges strongly to a left invariance uniformly on weakly compact sub-
sets of A if for every weakly compact set C ⊆ A, ∥aaα − φ(a)aα∥ → 0
uniformly for all a ∈ C.

In the following, P1((S(G), ∥.∥1), 1) denotes the collection of all 1-
maximal elements of a Segal algebra S(G) with respect to L1-norm.

Theorem 3.3. Let G be a locally compact group. Then the following
statements are equivalent:

(i) There is a net ψα ∈ P1((S(G), ∥.∥1), 1) such that ∥ψ ∗ ψα −
ψα∥S → 0 for each ψ ∈ P1((S(G), ∥.∥1), 1).

(ii) There is a net ψα ∈ P1((S(G), ∥.∥1), 1) such that for each weakly
compact subset C ⊆ P1((S(G), ∥.∥1), 1), ∥ψ ∗ ψα − ψα∥S → 0
uniformly for all ψ ∈ C.

Proof. (ii) implies (i): This is because the finite subsets in
P1((S(G), ∥.∥1), 1) are weakly compact.

(i) implies (ii): Let {ψα}α∈I ⊆ P1((S(G), ∥.∥1), 1) be as in (i). By
definition ∥ψ∥1 ≤ ∥ψ∥S for all ψ ∈ S(G), and so ∥ψ ∗ ψα −
ψα∥1 → 0 for each ψ ∈ P1((S(G), ∥.∥1), 1). We can assume that
ψα is left equicontinuous (that is, given ϵ > 0, there is some
neighborhood U of the identity inG such that ∥δx∗ψα−ψα∥1 < ϵ
for any α and x ∈ U) otherwise replace ψα by ψ ∗ψα where ψ is
a fixed element in P1((S(G), ∥.∥1), 1). We claim that for every
weakly compact subset C of P1((S(G), ∥.∥1), 1) and ϵ ∈ (0, 1),
there exists α0 such that ∥ψ ∗ψα−ψα∥1 < ϵ for all α ⪰ α0 and
ψ ∈ C. Let ψ0 be a fixed element in P1((S(G), ∥.∥1), 1). For
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the forward implication, note that the weak topology on S(G)
is finer than the relative weak topology on S(G) inherited from
L1(G). By Theorem 4.21.2 in [5], there exists a compact setK in
G such that

∫
G\K ψ(x)dx <

ϵ
4∥ψo∥S for all ψ ∈ C. By the above

argument, there exists α0 ∈ I such that ∥δx∗ψα−ψα∥1 < ϵ
2∥ψo∥S

for all α ⪰ α0 and x ∈ K(see Proposition 6.7 in [16]). For each
α ⪰ α0 and ψ ∈ C, we have

∥ψ ∗ ψα − ψα∥1 =
∫ ∣∣∣ ∫ ψα(y

−1x)ψ(y)dy − ψα(x)
∣∣∣dx

≤
∫ ∣∣∣ ∫

K
(ψα(y

−1x)− ψα(x))ψ(y)dy
∣∣∣dx

+

∫ ∫
G\K

|ψα(y−1x)− ψα(x)|ψ(y)dydx

<
ϵ
∫
K ψ(y)dy

2∥ψo∥S
+ 2

∫
G\K

ψ(y)dy

∫
ψα(x)dx

<
ϵ

∥ψo∥S
.

Let us define ϕα = ψα ∗ ψ0. For each α ⪰ α0 and ψ ∈ C, we
have

∥ψ ∗ ϕα − ϕα∥S = ∥ψ ∗ ψα ∗ ψ0 − ψα ∗ ψ0∥S
≤ ∥ψ ∗ ψα − ψα∥1∥ψo∥S
< ϵ. □

Let G be a locally compact group with left Haar measure and consider
the convolution algebra L1(G) [7]. Note that the group algebra L1(G)
is amenable with respect to the trivial character 1 precisely when G is
amenable [10]. The preceding proposition shows that if G is an amenable
locally compact group, then L1(G) has a bounded net which converges
strongly to a left invariance uniformly on weakly compact subsets of
L1(G).
As a straightforward application of our main result, we have the follow-
ing result:

Corollary 3.4. Let G be a locally compact group. Then the following
statements are equivalent:

(i) There is a net ψα ∈ P1(L
1(G), 1) such that ∥ψ ∗ψα−ψα∥1 → 0

for each ψ ∈ P1(L
1(G), 1), i.e. G is amenable;

(ii) There is a net ψα ∈ P1(L
1(G), 1) such that for each weakly com-

pact subset C ⊆ L1(G), ∥ψ ∗ψα−
∫
ψ(x)dxψα∥1 → 0 uniformly

for all ψ ∈ C.
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Proof. As L1(G) is a Segal algebra, this is just a re-statement of Theorem
3.3. □

Let A be an arbitrary Banach algebra. It remains an open question, to
the author’s knowledge, whether the existence of a bounded net {aα}α∈I
in A which converges strongly to a left invariance uniformly on weakly
compact subsets of A is equivalent to ∥aaα − φ(a)aα∥ → 0 for each
a ∈ A. We show this is the case for,

∥a∥Wap(A) = sup {|⟨f, a⟩| : f ∈Wap(A), ∥f∥ ≤ 1} , (a ∈ A)

The reason why we are interested in Wap(A) is the following:

Theorem 3.5. Let A be a Banach algebra with a bounded approximate
identity and φ ∈ ∆(A). Then the following statements are equivalent:

(i) There exists a bounded net {aα}α∈I in {a ∈ A; φ(a) = 1} such
that ∥aaα − φ(a)aα∥Wap(A) → 0 for each a ∈ A;

(ii) There exists a bounded net {aα}α∈I in {a ∈ A; φ(a) = 1} such
that for each weakly compact subset C ⊆ A, ∥aaα−φ(a)aα∥Wap(A)

→ 0 uniformly for all a ∈ C.

Proof. By the Banach Alaoghlu’s Theorem [18], without loss of gen-
erality we may assume that aα → m in the weak∗ topology of A∗∗.
Then ⟨m, f.a⟩ = φ(a)⟨m, f⟩, for all f ∈ Wap(A), a ∈ A [12]. Let
Tf : A 7−→ A∗ be a bounded linear mapping specified by Tf (a) = f.a.
Define the map κA : A∗ 7−→ B(A,A∗) by κA(f) = Tf . Take f ∈Wap(A)
and consider {aαf}α∈I . The corresponding net {Taαf}α∈I converges
to Tmf in the weak operator topology. This is immediate from the
fact that the weak topology and weak∗ topology coincide on weak clo-
sure {a.f : ∥a∥ ≤ ∥m∥} of {a.f : ∥a∥ ≤ ∥m∥}. The equicontinuity of
{Taαf}α∈I is now an exercise in functional analysis. Let C be any
weakly compact subset of A. C is weakly bounded, and so C is norm
bounded (see Theorem 3.18 in [18]). Let M = sup {∥c∥ : c ∈ C}. The
net {Taαf}α∈I converges uniformly to Tm.f in the weak operator topol-
ogy on C. This latter fact is crucial for our argument, so we give a
proof.

Let W be a weak neighborhood of zero in A∗. Choose a weak neigh-
borhood V of zero in A∗ such that V + V + V ⊆ W and a symmetric
weak neighborhood U of zero in A such that Taαf (U) ⊆ V for all α ∈ I
and Tmf (U) ⊆ V . C is weakly compact, and therefore C ⊆ S0 + U for
some finite set S0 = {a1, a2..., an}. It is a routine matter to see that
there exists α0 ∈ I such that Taαf (ai)− Tmf (ai) ∈ V for all α ⪰ α0 and
ai ∈ S0. For α ⪰ α0 and a ∈ C, we have

(Taαf − Tmf )(a) ∈
n∪
i=1

(Taαf − Tmf )(ai) + (Taαf − Tmf )(U)
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⊆
n∪
i=1

(Taαf − Tmf )(ai) + Taαf (U)− Tmf (U)

⊆ V + V + V ⊆W.

By the above argument, for any given ϵ > 0 and any n ∈ A∗∗, there
exists α0 ∈ I such that

|⟨n, Taαf (a)− Tmf (a)⟩| <
ϵ

2
.

for all α ⪰ α0 and a ∈ C. On the other hands, A has an approximate
identity {eα}α∈I . Any weak∗-limE of {eα}α∈I is a right identity of
Banach algebra A∗∗. Hence for all α ⪰ α0 and a ∈ C,

|⟨aaα − am, f⟩| = |⟨aαf −mf, a⟩|
= |⟨E, aαf.a−mf.a⟩|

<
ϵ

2
.

We also have |⟨aα, f⟩ − ⟨m, f⟩| < ϵ
2M for all α ⪰ α0. Consequently

|⟨aaα − φ(a)aα, f⟩| ≤ |⟨aaα − am, f⟩|+ |φ(a)||⟨m, f⟩ − ⟨aα, f⟩|
< ϵ.

This means that aaα − φ(a)aα −→ 0 uniformly in the weak topol-
ogy of Wap(A) for all a ∈ C. An argument similar to that in the
proof of Theorem 1.2 in [12] shows that we can find a bounded net
{uα}α∈I consisting of convex combination of elements in {aα}α∈I such
that ∥auα − φ(a)uα∥Wap(A) → 0 uniformly for all a ∈ C. □

A special interesting case is that there exists a left invariant φ-mean
on A∗. We obtain:

Theorem 3.6. Let {aα}α∈I be a bounded net in {a ∈ A; φ(a) = 1}
which converges strongly to a left invariance uniformly on weakly com-
pact subsets of A and let m be a left invariant φ-mean on A∗. Then there
is a net {bβ}β∈J in {a ∈ A; φ(a) = 1} such that bβ → m in the weak∗

topology and {bβ}β∈J converges strongly to a left invariance uniformly

on weakly compact subsets of A.

Proof. Let such a net {aα}α∈I exists. Choose a net {bβ}β∈J in A with

the property that bβ → m in the weak∗ topology of A∗∗ and ∥bβ∥ ≤ ∥m∥
for all β ∈ J [18]. Since ⟨bβ, φ⟩ → ⟨m,φ⟩ = 1, after passing to a

subnet and replacing bβ by 1
φ(bβ)

bβ, we can assume that φ(bβ) = 1

and ∥bβ∥ ≤ ∥m∥ + 1 for all β ∈ J . For each (α, f) in the product
directed set I×

∏
{J ; α ∈ I}, we define R(α, f) = (α, f(α)), α ∈ I, f ∈∏

{J ; α ∈ I} and let S(α, β) = aαbβ. The iterated limit limα limβ aαbβ
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(in the weak∗ topology of A∗∗) exists and is equal to m. Indeed, for
f ∈ A∗

lim
β
⟨f, aαbβ⟩ = lim

β
⟨faα, bβ⟩

= lim
β
⟨bβ, faα⟩

= ⟨m, faα⟩
= ⟨m, f⟩.

By the Iterated Limit Theorem, see p.69 in [13],

lim
(α,f)

SoR(α, f) = lim
(α,f)

aαbf(α)

= m

in the weak∗ topology of A∗∗ (with respect to (α, f)). It remains to
show that SoR(α, f) converges strongly to a left invariance uniformly
on weakly compact subsets C of A. Let ϵ > 0 be given. For every weakly
compact subset C of A, there exists α0 ∈ I such that ∥aaα−φ(a)aα∥ <

ϵ
∥m∥+1 for all α ⪰ α0 and a ∈ C. If α ⪰ α0 and a ∈ C, then

∥aSoR(α, f)− φ(a)SoR(α, f)∥ = ∥aaαbf(α) − φ(a)aαbf(α)∥
≤ ∥aaα − φ(a)aα∥(∥m∥+ 1)

< ϵ.

This completes the proof. □
Proposition 3.7. Let A be a Banach algebra and φ ∈ ∆(A). Then the
following statements are equivalent:

(i) There exists a net {aα}α∈I in {a ∈ A; φ(a) = 1} such that {aα}α∈I
converges to some left invariant φ-mean m with ∥m∥ = 1 in the
weak∗ topology and {aα}α∈I converges strongly to a left invari-
ance uniformly on weakly compact subsets of A;

(ii) For every weakly compact subset C of A and ϵ > 0,

inf {sup {∥ca∥; c ∈ C} , φ(a) = 1, ∥a∥ ≤ 1 + ϵ} ≤ (1+ϵ) sup {|φ(c)|; c ∈ C} ;
(iii) There exists a net {aα}α∈I in A with the following properties:

φ(aα) = 1 for all α ∈ I, ∥aα∥ → 1 and limα ∥aaα∥ = |φ(a)|
uniformly on weakly compact subsets of A.

Proof. (i) implies (ii): Let C be a weakly compact subset of A,
ϵ > 0 and let δ > 0 be given. By hypothesis there exists α0 ∈ I
such that ∥caα − φ(c)aα∥ < δ, ∥aα∥ ≤ 1 + ϵ for all α ⪰ α0 and
c ∈ C. Thus for every c ∈ C,

∥caα0∥ ≤ |φ(c)|∥aα0∥+ δ

< (1 + ϵ)|φ(c)|+ δ.
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Since δ > 0 may be chosen arbitrarily, the property holds.
(ii) implies (i): We claim that for every weakly compact subset

C of A and ϵ > 0, there exists aC,ϵ such that φ(aC,ϵ) = 1,
∥aC,ϵ∥ ≤ 1 + ϵ and ∥caC,ϵ − φ(c)aC,ϵ∥ < ϵ for all c ∈ C. Choose
δ > 0 such that (1 + δ)2 < 1 + ϵ. Take bC,ϵ ∈ A such that
φ(bC,ϵ) = 1 and ∥bC,ϵ∥ ≤ 1 + δ. Obviously

{c− φ(c)bC,ϵ; c ∈ C} ∪ {cbC,ϵ − c; c ∈ C}
is weakly compact and also φ(c − φ(c)bC,ϵ) = φ(cbC,ϵ − c) = 0
for all c ∈ C. By assumption, there exists aC,ϵ

′ ∈ A with
∥aC,ϵ′∥ ≤ 1+ δ, φ(aC,ϵ

′) = 1 such that ∥(c−φ(c)bC,ϵ)aC,ϵ
′∥ < ϵ

2
and ∥cbC,ϵaC,ϵ′ − caC,ϵ

′∥ < ϵ
2 for all c ∈ C. Put aC,ϵ = bC,ϵaC,ϵ

′.

Thus ∥aC,ϵ∥ = ∥bC,ϵaC,ϵ′∥ ≤ (1 + δ)2 ≤ 1 + ϵ and φ(aC,ϵ) = 1.
For every c ∈ C, we have

∥caC,ϵ − φ(c)aC,ϵ∥ = ∥cbC,ϵaC,ϵ′ − φ(c)bC,ϵaC,ϵ
′∥

≤ ∥cbC,ϵaC,ϵ′ − caC,ϵ
′∥+ ∥caC,ϵ′ − φ(c)bC,ϵaC,ϵ

′∥
< ϵ.

Now, order the pairs (C, ϵ), C ⊆ A weakly compact, ϵ > 0, in
the obvious manner, and let m be a weak∗ cluster point of the
net {aC,ϵ} in A. Then ∥m∥ ≤ 1, ⟨m,φ⟩ = 1 and hence ∥m∥ = 1.
So {aC,ϵ}C,ϵ is the required net.

(iii) implies (ii): Let ϵ > 0 and let C be a weakly compact subset
of A. For every δ > 0, there exists α0 ∈ I such that |∥caα∥ −
|φ(c)|| < δ and ∥aα∥ ≤ 1 + ϵ for every α ⪰ α0 and c ∈ C. Then

inf {sup {∥ca∥; c ∈ C} , φ(a) = 1, ∥a∥ ≤ 1 + ϵ}
≤ inf {sup {∥caα∥; c ∈ C} , α ∈ I}
≤ (1 + ϵ) sup {|φ(c)|; c ∈ C}+ δ.

Since δ > 0 may be chosen arbitrarily, the property holds.
(i) implies (iii): By hypothesis there exists a net {aα}α∈I in A such

that φ(aα) = 1 for all α ∈ I, ∥aα∥ → 1 and ∥aaα−φ(a)aα∥ → 0
uniformly on weakly compact subsets of A. Let ϵ > 0 and let C
be a weakly compact subset of A. Since C is a weakly compact
subset of A, C is weakly bounded and so {|φ(c)|; c ∈ C} is
bounded [18]. Let k = sup {|φ(c)|; c ∈ C}. For every α ∈ I
and c ∈ C, we have

|∥aaα∥ − |φ(a)|| ≤ |∥aaα∥ − |φ(a)|∥aα∥|+ |φ(a)||∥aα∥ − 1|
≤ ∥aaα − φ(a)aα∥+ k|∥aα∥ − 1|.

This shows that limα ∥aaα∥ = |φ(a)| uniformly on weakly com-
pact subsets of A.
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□
Let A be a Lau algebra. The identity of A∗ will be denoted by e. Also

P (A) will denote the cone of all positive functionals in A and P1(A) will
denote the set of all f ∈ P (A) such that f(e) = 1. Lau in [14] proved
that A is left amenable if and only if there exists a net fα ∈ P1(A)
such that limα ∥f.fα∥ = |f(e)| for each f ∈ A. Note that a Banach
algebra A∗∗ has a left invariant φ-mean if any one of the conditions in
Proposition 1 hold.

Definition 3.8. Let A be a Banach algebra and let Z be a compact
convex subset of a locally convex Hausdorff topological vector space E.
The pair (A,Z) is called a flow, if;

(i) There exists a map ρ : A × E → E such that for each z ∈ Z,
the map ρ(−, z) : A → E is continuous and linear when A has
the weak topology;

(ii) For any a, b ∈ A and z ∈ Z, ρ(a, ρ(b, z)) = ρ(ab, z).

If φ ∈ ∆(A), we say that Z is P1(A,φ)-invariant under ρ if ρ(a, z) ∈
Z for any a ∈ P1(A,φ) and z ∈ Z. In this case ρ induces a map
ρ : P1(A,φ) × Z → Z of P1(A,φ) on the compact convex subset Z (as
affine maps now).

Theorem 3.9. Let A be a Banach algebra and φ ∈ ∆(A). Among the
following two properties, the implication (i) → (ii) hold. If X(A,φ) = A,
then (ii) → (i).

(i) There exists a left invariant φ-mean m in P1(A,φ)
w∗

;
(ii) Every flow (A,Z) admits a P1(A,φ)-invariant element z ∈ Z,

that is, for all a ∈ P1(A,φ), ρ(a, z) = z.

Proof. Assume that A∗∗ has a left invariant φ-meanm ∈ P1(A,φ)
w∗

. Let
Z be a compact convex subset of a locally convex Hausdorff topological
vector space E and let (A,Z) be a flow. If f ∈ E∗ and z ∈ Z, we may
define a functional fz on A by putting ⟨fz, a⟩ = ⟨f, ρ(a, z)⟩, a ∈ A.
Since the map a 7→ ρ(a, z) is continuous, we have fz ∈ A∗. We embed E
into the algebric dual (E∗)′ of E∗ with the topology σ((E∗)′, E∗). If Λ
is a σ((E∗)′, E∗)-cluster point of Z, then there exists a net {zα}α∈I in Z
such that zα → Λ in the σ((E∗)′, E∗)-topology. Since Z is compact in E,
without loss of generality, we may assume that zα → z for some z ∈ Z.
For every f ∈ E∗, we have ⟨zα, f⟩ → ⟨Λ, f⟩ and also ⟨f, zα⟩ → ⟨f, z⟩.
We conclude that Λ = z ∈ Z, and so Z is a closed subset in (E∗)′.

Let z0 be a fixed element in Z and let n ∈ P1(A,φ)
w∗

. Define Λn :
E∗ → C by Λn(f) = ⟨n, fz0⟩. It is easily checked that Λn is linear,

and so Λn ∈ (E∗)′. Define Λ : P1(A,φ)
w∗

→ (E∗)′ by Λ(n) = Λn. The
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mapping Λ from P1(A,φ)
w∗

equipped with the weak∗ topology into (E∗)′

equipped with the σ((E∗)′, E∗)-topology is continuous. In particular, if
a ∈ P1(A,φ), P1(A,φ)-invariance of Z imply that Λ(a) = Λa ∈ Z.

Indeed, Λa = ρ(a, z0). Since P1(A,φ) is weak
∗ dense in P1(A,φ)

w∗
and

Z is closed in (E∗)′, we conclude that Λm ∈ Z. We shall show that Λm
is the required fixed point. Let a ∈ P1(A,φ) and f ∈ E∗. We consider
the mapping ρa : Z → Z defined by ρa(z) = ρ(a, z). We have

⟨f,Λm⟩ = ⟨m, fz0⟩
= ⟨m, fz0a⟩
= ⟨m, (foρa)z0⟩
= ⟨foρa,Λm⟩
= ⟨f, ρ(a,Λm)⟩.

This shows that ρ(a,Λm) = Λm, that is, Λm is a fixed point under the
map ρ.

Conversely, assume (ii). Let E = A∗∗ with weak∗ topology and Z =

P1(A,φ)
w∗

. By the Banach-Alaoglu’s theorem [18], Z is weak∗ compact.
Define a map ρ of A× A∗∗ into A∗∗ by ρ(a, p) = ap for each a ∈ A and
p ∈ A∗∗. Let p be a fixed element in A∗∗ and let {aα}α∈I be a net in A
converging to a ∈ A in the weak topology of A. Then, for f ∈ A∗,

lim
α
⟨aαp, f⟩ = lim

α
⟨aα, pf⟩

= lim
α
⟨pf, aα⟩

= ⟨pf, a⟩
= ⟨ap, f⟩.

This shows that the mapping a 7→ ρ(a, p) is continuous. By hypothesis

there exists m ∈ Z = P1(A,φ)
w∗

that is fixed under the map ρ, that is,
for every a ∈ P1(A,φ), am = m. Hencem is a left invariant φ-mean. □
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