نویسندگان | Ali Ghaffari- Samaneh Javadi- Ebrahim Tamimi |
---|---|
نشریه | Journal of Algebraic Systems |
ارائه به نام دانشگاه | semnan |
شماره صفحات | ۶۹-۸۲ |
شماره سریال | ۱ |
شماره مجلد | ۸ |
نوع مقاله | Original Research |
تاریخ انتشار | ۲۰۲۰ |
رتبه نشریه | علمی - پژوهشی |
نوع نشریه | الکترونیکی |
کشور محل چاپ | ایران |
نمایه نشریه | scopus |
چکیده مقاله
In this paper, we define φ-Connes module amenability of a dual Banach algebra A, where φ is a bounded module homomorphism from A to A that is wk∗ -continuous. We are mainly concerned with the study of φ-module normal, virtual diagonals. We show that if S is a weakly cancellative and S is an inverse semigroup with subsemigroup E of idempotents, χ is a bounded module homomorphism from l 1 (S) to l 1 (S) that is wk∗ -continuous and l 1 (S) as a Banach module over l 1 (E) is χ-Connes module amenable, then it has a χ-module normal, virtual diagonal. In the case χ = id, the converse also holds.
tags: Banach algebra, module amenability, derivation, semigroup algebra