φ-CONNES MODULE AMENABILITY OF DUAL BANACH ALGEBRAS

نویسندگانAli Ghaffari- Samaneh Javadi- Ebrahim Tamimi
نشریهJournal of Algebraic Systems
ارائه به نام دانشگاهsemnan
شماره صفحات۶۹-۸۲
شماره سریال۱
شماره مجلد۸
نوع مقالهOriginal Research
تاریخ انتشار۲۰۲۰
رتبه نشریهعلمی - پژوهشی
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهscopus

چکیده مقاله

In this paper, we define φ-Connes module amenability of a dual Banach algebra A, where φ is a bounded module homomorphism from A to A that is wk∗ -continuous. We are mainly concerned with the study of φ-module normal, virtual diagonals. We show that if S is a weakly cancellative and S is an inverse semigroup with subsemigroup E of idempotents, χ is a bounded module homomorphism from l 1 (S) to l 1 (S) that is wk∗ -continuous and l 1 (S) as a Banach module over l 1 (E) is χ-Connes module amenable, then it has a χ-module normal, virtual diagonal. In the case χ = id, the converse also holds.

لینک ثابت مقاله

متن کامل مقاله

tags: Banach algebra, module amenability, derivation, semigroup algebra