| عنوان لاتین مقاله | Characterization of module Connes amenability for certain Banach algebras by homomorphisms |
|---|---|
| نویسندگان | Ebrahim Tamimi & Abasalt Bodaghi |
| نشریه | Journal of Algebra and Its Applications |
| عنوان لاتين نشریه | Journal of Algebra and Its Applications |
| كد DOI/DOR | 10.1142/S021949882750085X |
| ضریب تاثیر (IF) | 0.6 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2025 |
| رتبه نشریه | ISI |
| نوع نشریه | الکترونیکی |
| کشور محل چاپ | سنگاپور |
| نمایه نشریه | ISI-Q3-Scopus Q2 |
چکیده مقاله
Let A=(A∗)∗ and B=(B∗)∗ be dual Banach algebras and U be a Banach algebra. Let also Ω=(Ω∗)∗ be a normal Banach A-bimodule and Π:B→A be an U-bimodule algebraic homomorphism. In this article, we investigate the notion of U-bimodule Connes amenability for the projective tensor product Aˆ⊗B pertinent to its closed two-sided ideals. Moreover, we characterize the U-bimodule (ψBU,θ)-Connes amenability of Π-Lau product A×ΠB, where ψAU:A→A is a w∗-continuous U-bimodule algebraic homomorphism, θ:B→C is a bounded linear functional such that θ∈B∗ (the predual of B) and A is Banach U-bimodule. Furthermore, we obtain a characterization for U-bimodule (ψBU,0)-Connes amenability of U-bimodule extension of Banach algebra A⊕Ω. Lastly, for more clarity of our results, we present some concrete examples in the setting of matrices algebra.