

φ -SPLITTING AND φ -CONNES MODULE AMENABILITY IN BANACH ALGEBS

EBRAHIM TAMIMI *

Department of Mathematics, Velayat University, P. O. Box 9917638733, Iranshahr, Iran; e.tamimi@velayat.ac.ir

ABSTRACT. In present paper, we characterize φ -Connes module amenability of a Banach algebra in terms of φ -splitting of the short exact sequence, where φ is continuous bounded module homomorphism whit respect to ω^* -topology on mentioned Banach algebra. Also, we generalize this to module product of two Banach algebras.

1. Introduction

In [1], Ghaffari et al. studied φ -Connes module amenability of dual Banach algebras The notion of χ -module Connes amenability of semi-group algebras is studied by the authors in [2]. Also, the notion of $\chi \otimes \eta$ -strong Connes amenability of certain dual Banach algebras is investigated by Tamimi and Ghaffari in [3]. We know that for Banach algebra \mathcal{A} , the projective tensor product $\mathcal{A} \widehat{\otimes} \mathcal{A}$ is a Banach \mathcal{A} -bimodule. A dual Banach \mathcal{A} -bimodule E is called normal if the module actions of \mathcal{A} on E are ω^* -continuous. Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a dual Banach algebra and let E be a Banach \mathcal{A} -bimodule. Then $\sigma wc(E)$, a closed submodule of E, stands for the set of all elements $x \in E$ such that the following maps are ω^* - ω continuous

$$\mathcal{A} \longrightarrow E; \quad a \longmapsto a.x, \ a \longmapsto x.a.$$

²⁰¹⁰ Mathematics Subject Classification. Primary 46J10; Secondary 22D15. Key words and phrases. φ - σ wc virtual diagonal, φ -Connes module amenability, Σ φ -splits, short exact sequence, φ -derivation.

^{*} Speaker.

Throughout the paper, $\Delta(\mathcal{A})$ and $\Delta_{\omega^*}(\mathcal{A})$ will denote the sets of all homomorphisms and ω^* -continuous homomorphisms from the Banach algebra \mathcal{A} onto \mathbb{C} , respectively.

In present paper, we give a characterization of φ -Connes module amenability of a dual Banach algebra by φ -splitting of the related short exact sequences. Also, by letting that two Banach algebras are φ -Connes module amenable and ψ -Connes module amenable respectively, we show that this property is holds for the special tensor product of their.

2. Preliminary Definitions

Definition 2.1. Let \mathcal{A} be a Banach algebra, and let $3 \leq n \in \mathbb{N}$. A sequence $\mathcal{A}_1 \stackrel{\varphi_1}{\to} \mathcal{A}_2 \stackrel{\varphi_2}{\to} \dots \stackrel{\varphi_{n-1}}{\to} \mathcal{A}_n$ of \mathcal{A} -bimodules $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$ and \mathcal{A} -bimodule homomorphisms $\varphi_i : \mathcal{A}_i \to \mathcal{A}_{i+1}$ for $i \in \{2, ..., n-1\}$ is called exact at position i = 2, ..., n-1 if $\varphi_{i-1} = ker\varphi_i$. It is called exact if it is exact at every position i = 2, ..., n-1.

We restrict ourselves to exact sequences with few bimodules.

Definition 2.2. Let \mathcal{A} be a Banach algebra. A short exact sequence

$$\Theta: 0 \to \mathcal{A}_1 \stackrel{\varphi_1}{\to} \mathcal{A}_2 \stackrel{\varphi_2}{\to} \dots \stackrel{\varphi_{n-1}}{\longrightarrow} \mathcal{A}_n \to 0$$

of Banach \mathcal{A} -bimodules $\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_n$ and \mathcal{A} -bimodule homomorphisms $\varphi_i : \mathcal{A}_i \to \mathcal{A}_{i+1}$ for i = 1, 2, ...n - 1 is admissible, if there exists a bounded linear map $\rho_i : \mathcal{A}_{i+1} \to \mathcal{A}_i$ such that $\rho_i o \varphi_i$ on \mathcal{A}_i for i = 1, 2, ...n - 1 is the identity map. Further, Θ splits if we may choose ρ_i to be an \mathcal{A} -bimodule homomorphism.

Definition 2.3. Let $\mathcal{A} = (\mathcal{A}_*)^*$ be an unital dual Banach algebra, and let $\varphi \in \Delta_{\omega^*}(\mathcal{A}) \cap \mathcal{A}_*$. We say that $\sum \varphi$ -splits if there exists a bounded linear map $\rho : \sigma wc((\mathcal{A} \widehat{\otimes} \mathcal{A})^*) \to \mathcal{A}_*$ such that $\rho o \pi^*(\varphi) = \varphi$ and $\rho(T.a) = \varphi(a)\rho(T)$, for all $a \in \mathcal{A}$ and $T \in \sigma wc((\mathcal{A} \widehat{\otimes} \mathcal{A})^*)$.

Definition 2.4. Let \mathcal{A} be a dual Banach algebra, and let $\varphi \in \Delta_{\omega^*}(\mathcal{A}) \cap \mathcal{A}_*$. An element $M \in \sigma wc((\mathcal{A} \widehat{\otimes} \mathcal{A})^*)^*$ is a φ - σwc virtual diagonal for \mathcal{A} if $a.M = \varphi(a)M$ for all $a \in \mathcal{A}$ and $\langle \varphi \otimes \varphi, M \rangle = 1$.

Now, we define the map \mathcal{A} -bimodule homomorphism $\pi: \mathcal{A}\widehat{\otimes} \mathcal{A} \longrightarrow \mathcal{A}$ by $\pi(a \otimes b) = ab$. We consider the following short exact sequences, which have three non-zero terms:

$$\sum_{\varphi} : 0 \to \mathcal{A}_* \xrightarrow{\pi_{\mathcal{A}}^*} \sigma w c (\mathcal{A} \widehat{\otimes} \mathcal{A})^* \to \sigma w c (\mathcal{A} \widehat{\otimes} \mathcal{A})^* / \pi_{\mathcal{A}}^* (\mathcal{A}_*) \to 0,$$

 φ -SPLITTING AND φ -CONNES MODULE AMENABILITY

$$\sum_{\psi} : 0 \to \mathcal{B}_* \xrightarrow{\pi_{\mathcal{B}}^*} \sigma wc(\mathcal{B} \widehat{\otimes} \mathcal{B})^* \to \sigma wc(\mathcal{B} \widehat{\otimes} \mathcal{B})^* / \pi_{\mathcal{B}}^*(\mathcal{B}_*) \to 0.$$

Definition 2.5. Let \mathcal{A} be a dual Banach algebra and $\varphi \in \Delta(\mathcal{A}) \cap \mathcal{A}_*$. \mathcal{A} is φ -Connes amenable if for every normal φ -bimodule E, every bounded ω^* -continuous derivation $D: \mathcal{A} \to E$ is inner.

3. Characterization of φ -Connes module amenability by φ -splitting

In this section, we investigate the relation between notions of φ Connes module amenability and φ -splitting.

Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a dual Banach algebra, and \mathcal{U} be a Banach algebra such that \mathcal{A} is a Banach \mathcal{U} -bimodule via,

$$\alpha.(ab) = (\alpha.a).b, \quad (\alpha\beta).a = \alpha.(\beta.a) \qquad (a, b \in \mathcal{A}, \alpha, \beta \in \mathcal{U}).$$

Let E be a dual Banach A-bimodule. E is called normal if for each $x \in E$, the maps

$$\mathcal{A} \to E; \qquad a \to a.x, \quad a \to x.a$$

are ω^* - continuous. If moreover E is a \mathcal{U} -bimodule such that for $a \in \mathcal{A}$, $\alpha \in \mathcal{U}$ and $x \in E$

$$\alpha.(a.x) = (\alpha.a).x, \quad (a.\alpha).x = a.(\alpha.x), \quad (\alpha.x).a = \alpha.(x.a),$$

then E is called a normal Banach left A-U-module. Similarly for the right and two sided actions. Also, E is called commutative, if

$$\alpha.x = x.\alpha$$
 $(\alpha \in \mathcal{U}, x \in E).$

A module homomorphism from \mathcal{A}_* to \mathcal{A}_* is a map $\varphi : \mathcal{A}_* \to \mathcal{A}_*$ with $\varphi(\alpha.a+b.\beta) = \alpha.\varphi(a)+\varphi(b).\beta$, $\varphi(ab) = \varphi(a)\varphi(b)$ $(a,b \in \mathcal{A}_*, \alpha, \beta \in \mathcal{U})$.

Throughout the paper, $\mathcal{HOM}_{\omega^*}^b(\mathcal{A}_*)$ will denotes the space of all bounded module homomorphisms from \mathcal{A}_* to \mathcal{A}_* that are ω^* -continuous.

Definition 3.1. ([1], P. 71) Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a dual Banach algebra, $\varphi \in \mathcal{HOM}^b_{\omega^*}(\mathcal{A}_*)$. let E be a dual Banach \mathcal{A}_* -bimodule. A bounded map $D_{\mathcal{U}}: \mathcal{A}_* \to E$ is called a module φ -derivation if

$$D_{\mathcal{U}}(\alpha.a\pm b.\beta) = \alpha.D_{\mathcal{U}}(a)\pm D_{\mathcal{U}}(b).\beta$$
, $D_{\mathcal{U}}(ab) = D_{\mathcal{U}}(a).\varphi(b)+\varphi(a).D_{\mathcal{U}}(b)$, for every $a,b\in\mathcal{A}_*$ and $\alpha,\beta\in\mathcal{U}$.

Definition 3.2. ([1], P. 71) Let \mathcal{A}_* be a dual Banach algebra, \mathcal{U} be a Banach algebra such that \mathcal{A}_* is a Banach \mathcal{U} -module and $\varphi \in \mathcal{HOM}^b_{\omega^*}(\mathcal{A}_*)$. \mathcal{A}_* is called φ -Connes module amenable if for any commutative normal Banach \mathcal{A}_* - \mathcal{U} -module E, each ω^* -continuous module φ -derivation $D_{\mathcal{U}}: \mathcal{A}_* \to E$ is inner.

TAMIMI

Theorem 3.3. Let \mathcal{A}_* be a dual Banach algebra and $\varphi \in \mathcal{HOM}^b_{\omega^*}(\mathcal{A}_*)$. Then \mathcal{A}_* is φ -Connes module amenable if and only if Σ_{φ} φ -splits.

Suppose that \mathcal{A}, \mathcal{B} and \mathcal{U} be dual Banach algebras such that \mathcal{A} and \mathcal{B} be dual Banach \mathcal{U} -modules. Let I be the closed ideal of $\mathcal{A} \widehat{\otimes} \mathcal{B}$ generated by elements of the form $\alpha.(a \otimes b) - (a \otimes b).\alpha$ for $a \in \mathcal{A}, b \in \mathcal{B}$ and $\alpha \in \mathcal{U}$. $\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B}$ is defined to be the quitiont Banach space $\frac{\mathcal{A} \widehat{\otimes} \mathcal{B}}{I}$.

Theorem 3.4. Let \mathcal{A}, \mathcal{B} and \mathcal{U} be dual Banach algebras, let \mathcal{A}, \mathcal{B} be unital dual Banach \mathcal{U} -modules and let $\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B}$ be a dual Banach algebra and $\varphi \in \mathcal{HOM}^b_{\omega^*}(\mathcal{A}), \ \psi \in \mathcal{HOM}^b_{\omega^*}(\mathcal{B})$. If \mathcal{A}, \mathcal{B} are φ -Connes module amenable, ψ -Connes module amenable respectively, then $\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B}$ is $\varphi \widehat{\otimes}_{\mathcal{U}} \psi$ -Connes module amenable.

Theorem 3.5. Let \mathcal{A}, \mathcal{B} and \mathcal{U} be dual Banach algebras, let \mathcal{A}, \mathcal{B} be unital dual Banach \mathcal{U} - modules and let $\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B}$ be a dual Banach algebra and $\varphi \in \mathcal{HOM}^b_{\omega^*}(\mathcal{A}), \ \psi \in \mathcal{HOM}^b_{\omega^*}(\mathcal{B}). \ \mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B}$ is $\varphi \widehat{\otimes}_{\mathcal{U}} \psi$ -Connes module amenable if and only if $\Sigma_{\varphi \widehat{\otimes}_{\mathcal{U}} \psi} \varphi \widehat{\otimes}_{\mathcal{U}} \psi$ -splits.

4. Conclusion

In this paper, we studied the relation between φ -splitting and φ -Connes module amenability, where φ is a continuous bounded module homomorphism with respect to ω^* -topology.

References

- 1. A. Ghaffari, S. Javadi and E. Tamimi, φ -Connes module amenability of dual Banach algebras, J A S. 8 (2020), no. 1, 69-82.
- 2. E. Tamimi and A. Ghaffari, A Survey on χ-module Connes amenability of semi-group algebras, JAS. 29 (2023), Accepted to Online Publish, https://doi.org/10.21203/rs.3.rs-2676837/v1.
- 3. E. Tamimi and A. Ghaffari, On $\chi \otimes \eta$ -strong Connes amenability of certain dual Banach algebras, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 31 (2024), no. 1, 1-19.