

وزات علوم تحقيات وفاوري The 8th Seminar on Functional Analysis and its Applications

6-7 November 2024

Ayatollah Boroujerdi University Boroujerd, Iran

ON GENERALIZATIONS OF SYMMETRIC BI-DERIVATIONS ON GROUP ALGEBRAS

EBRAHIM TAMIMI*AND HAMID REZA SANAEIFAR

Department of Mathematics, Velayat University, Iranshahr, Iran e.tamimi@velayat.ac.ir; hamidsanaeifar57@gmail.com

ABSTRACT. In this paper, we investigate generalizations of symmetric bi-derivations on $L_0^\infty(G)^*$. For $k\in\mathbb{N}$, we prove that if $B:L_0^\infty(G)^*\times L_0^\infty(G)^*\to L_0^\infty(G)^*$ is a symmetric bi-derivation such that $[B(m,m),m^k]\in Z(L_0^\infty(G)^*)$ for all $m\in L_0^\infty(G)^*$, then B=0. Also, we characterize symmetric generalized biderivations on group algebras.

1. Introduction

Let G denote a locally compact abelian group with a fixed left Haar measure λ . We know that $L^1(G)$ and $L^{\infty}(G)$ are Banach algebras. Consider that $L^{\infty}(G)$ is the continuous dual of $L^1(G)$. We denote by $L_0^{\infty}(G)$ the subspace of $L^{\infty}(G)$ consisting of all functions $g \in L^{\infty}(G)$ that vanish at infinity. For every $n \in L_0^{\infty}(G)^*$ and $g \in L_0^{\infty}(G)$ we define the functional $ng \in L_0^{\infty}(G)^*$ by

$$\langle ng, \varphi \rangle = \langle n, g\varphi \rangle$$

in which $\langle \varphi, \psi \rangle = \langle g, \varphi * \psi \rangle$ and

$$\varphi * \psi(x) = \int_{G} \phi(y)\psi(y^{-1}x)d\lambda(y)$$
 (1.1)

²⁰²⁰ Mathematics Subject Classification. Primary 43A15; Secondary 47B47

Key words and phrases. Bi-derivation, Locally compact abelian group, κ -centralizing mapping, κ -skew centralizing mapping.

^{*} Speaker.

TAMIMI AND SANAEIFAR

for all $\varphi, \psi \in L_1(G)$ and $x \in G$. We equippe $L_0^{\infty}(G)^*$ to the first Arens product "·" defined by the formula $\langle m.n,g\rangle = \langle m,ng\rangle$ for all $m,n \in L_0^{\infty}(G)^*$ and $g \in L_0^{\infty}(G)^*$. Then $L_0^{\infty}(G)^*$ is a Banach algebra with the mentioned product. For more information of $L_0^{\infty}(G)^*$ see [4]. The notion of symmetric bi-derivations is investigated in [1, 8]. Let \mathcal{A} be an algebra and B(.,.): $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$ be a symmetric bi-linear mapping; that is, B(x,y) = B(y,x), $B(\alpha x,y) = \alpha B(x,y)$ and B(x+y,z) = B(x,z) + B(y,z) for all $x,y,z \in \mathcal{A}$ and $\alpha \in \mathbb{C}$. The mapping $f: \mathcal{A} \to \mathcal{A}$ defined by f(x) = B(x,x) is called the trace of B. We say that B is called a symmetric bi-derivation if we have

$$B(xy,z) = B(x,z)y + xB(y,z)$$
(1.2)

for all $x, y, z \in \mathcal{A}$. Also, B is called a symmetric generalized bi-derivation if there exists a symmetric bi-derivation \tilde{B} of \mathcal{A} such that

$$B(xy,z) = xB(y,z) + \overline{B}(x,z)y \tag{1.3}$$

for all $x, y, z \in \mathcal{A}$. A symmetric generalized bi-derivation B associated with a symmetric bi-derivation $\tilde{\mathbf{B}}$ is denoted by $B_{\overline{B}}$. For $\kappa \in \mathbb{N}$, a linear mapping $T: \mathcal{A} \to \mathcal{A}$ is called κ -(skew) centralizing if

$$[T(x), x^{\kappa}] \in Z(\mathcal{A})$$
 $(T(x) \circ x^{\kappa} \in Z(\mathcal{A}))$ (1.4)

for all $x \in \mathcal{A}$, in a special case, if for every $x \in \mathcal{A}$

$$[T(x), x^{\kappa}] = 0 \qquad (T(x) \circ x^{\kappa} = 0));$$

then T is called κ -(skew) commuting, where $Z(\mathcal{A})$ is the center of \mathcal{A} , [x,y] = xy - yx and $x \circ y := x.y + y.x$ for all $x,y \in \mathcal{A}$. If, $\kappa = 1$, T is called (skew) centralizing and (skew) commuting, respectively. Symmetric bi-derivations on rings have been introduced and studied by Maksa [5]. Vukman [9] proved that if $B: R \times R \to R$ is a symmetric bi-derivation such that for every $x \in R$

$$[[f(x), x], x] \in Z(R);$$

then B=0, where R is a noncommutative prime ring of characteristic not two and three. He conjectured that if there exists $\kappa \in \mathbb{N}$ such that for every $x \in R$ we have $f_{\kappa}(x) \in Z(R)$; then B=0, where

$$f_{i+1}(x) = [f_i(x), x]$$

for i > 1 and $f_1(x) = f(x)$. In [3], Deng gave an affrmative answer to the Vukman's conjecture. For related results on symmetric bi-derivations on Banach algebras see [7]; see also [2] for study of generalized bi-derivations.

The mapping $B(.,.): L_0^\infty(G)^* \times L_0^\infty(G)^* \to L_0^\infty(G)^*$ defined by B(m,n) = r.m.n is a nonzero bi-derivation. These facts lead us to investigate symmetric bi-derivations on $L_0^\infty(G)^*$. In this paper, we first study symmetric bi-derivations on $L_0^\infty(G)^*$ and prove that they map $L_0^\infty(G)^* \times L_0^\infty(G)^* \to L_0^\infty(G)^*$ into the radical of $L_0^\infty(G)^*$. We also show that if $B: L_0^\infty(G)^* \times L_0^\infty(G)^* \to L_0^\infty(G)^*$ is a symmetric bi-derivation and f is κ -centralizing for some $\kappa \in \mathbb{N}$, then B is zero map. In the case that, B is a symmetric

generalized bi-derivation, we prove that there exists $\theta \in L_0^{\infty}(G)^*$ such that $B(m,n) = m.n.\theta$ for all $m.n \in L_0^{\infty}(G)^*$.

2. Main results

In the sequel, we use the symbols D, for symmetric bi-derivations. The following result is an analogue of [1, Proposition 2.1.] for bi-derivations.

Lemma 2.1. Let $D_1, D_2 : L_0^{\infty}(G)^* \times L_0^{\infty}(G)^* \to L_0^{\infty}(G)^*$ be symmetric bi-derivations. Then $D_1 + D_2$ maps $L_0^{\infty}(G)^* \times L_0^{\infty}(G)^*$ into the radical of $L_0^{\infty}(G)^*$.

Proof. For every $m \in L_0^{\infty}(G)^*$ we define the mapping $\Delta_m : L_0^{\infty}(G)^* \to L_0^{\infty}(G)^*$ by

$$\Delta_m(n) = D(m, n). \tag{2.1}$$

For every $m \in L_0^{\infty}(G)^*$, Δ_m is a derivation on $L_0^{\infty}(G)^*$ and hence Δ_m maps $L_0^{\infty}(G)^*$ into its radical for all $m \in L_0^{\infty}(G)^*$; see [6]. Since $D_i(L_0^{\infty}(G)^* \times L_0^{\infty}(G)^*) = \bigcup_m \Delta_m(L_0^{\infty}(G)^*)$, i = 1, 2, then D_i maps $L_0^{\infty}(G)^* \times L_0^{\infty}(G)^*$ into the radical of $L_0^{\infty}(G)^*$.

Theorem 2.2. Let $D_1, D_2 : L_0^{\infty}(G)^* \times L_0^{\infty}(G)^* \to L_0^{\infty}(G)^*$ be symmetric bi-derivations, and let f and g be the trace of D_1 and D_2 , respectively. Then the following are equivalent.

- (a) there exists $\kappa \in \mathbb{N}$ such that $f(t^{\kappa}) = g(t^{\kappa}) = 0$ for all $t \in L_0^{\infty}(G)^*$;
- (b) there exists $\kappa \in \mathbb{N}$ such that f + g is κ -commuting;
- (c) there exists $\kappa \in \mathbb{N}$ such that f + g is κ -centralizing;
- (d) there exists $\kappa \in \mathbb{N}$ such that f + g is κ -skew commuting;
- (e) there exists $\kappa \in \mathbb{N}$ such that f + g is κ -skew centralizing;
- (f) $D_1 + D_2 = 0$.

Proof. Let $\kappa \in \mathbb{N}$ and $t \in L_0^{\infty}(G)^*$. We obtain $(f+g)(t^{\kappa}) = D(t^{\kappa}, t^{\kappa}) + D(t^{\kappa}, t^{\kappa}) = f(t)(t^{2\kappa-2}) + g(t)(t^{2\kappa-2})$. Also, we obtain

$$f(t).t^{\kappa} = \langle f(t), t^{\kappa} \rangle, \qquad g(t).t^{\kappa} = \langle g(t), t^{\kappa} \rangle$$
 (2.2)

Corollary 2.3. Let $D_1, D_2 : L_0^{\infty}(G)^* \times L_0^{\infty}(G)^* \to L_0^{\infty}(G)^*$ be symmetric bi-derivations, and let f and g be the trace of D_1 and D_2 , respectively. Then the following assertions are equivalent.

- (a) f + g is (skew) centralizing;
- (b) there exists $\kappa \in \mathbb{N}$ such that f + g is κ -(skew) centralizing;
- (c) for every $\kappa \in \mathbb{N}$, f + g is κ -(skew) centralizing;
- (d) $D_1 + D_2 = 0$.

TAMIMI AND SANAEIFAR

Corollary 2.4. Let Let $D_1: L_0^{\infty}(G)^* \times L_0^{\infty}(G)^* \to L_0^{\infty}(G)^*$ and $D_2: L_0^{\infty}(G)^* \times L_0^{\infty}(G)^* \to L_0^{\infty}(G)^*$ be symmetric bi-derivations, f and g be the trace of D_1 and D_2 , respectively. Then the following assertions are equivalent.

- (a) f + g is commuting;
- (b) f + g is centralizing;
- (c) f + g is skew commuting;
- (d) f + g is skew centralizing;
- (e) $D_1 + D_2 = 0$.

ACKNOWLEDGEMENT

The authors would like to thank the referee of the paper for invaluable comments.

References

- 1. M. H. Ahmadi Gandomani and M. J. Mehdipour, Symmetric Bi-derivations and their Generalizations on Group Algebras, Filomat, 35 (4) (2021) 1233–1240.
- M. Bresar, On generalized bi-derivations and related maps, J. Algebra, 122 (1995), 764-786.
- Q. Deng, On a conjecture of Vukman, Internat. J. Math. Math. Sci. 20 (2) (1997), 263–266.
- 4. A. T. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc. 41 (1990) 445–460.
- 5. G. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada, 9 (1987), 303—307.
- 6. M. J. Mehdipour and Z. Saeedi, Derivations on group algebras of a locally compact abelian group, Monatsh. Math., 180 (3) (2016) 595-605.
- 7. C. Park, Biderivations and bihomomorphisms in Banach algebras, Filomat **33** (8) (2019) 2317–2328.
- 8. E. Tamimi and A. Ghaffari, A Survey on χ -module Connes amenability of semigroup algebras, JAS. 29 (2023), Accepted to Online Publish. https://doi.org/10.21203/rs.3.rs-2676837/v1
- J. Vukman, Two results concerning symmetric bi-derivations on prime rings, Aequations Math., 40 (1990), 181–189.