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ABSTRACT. In this paper, we establish a new type of Hadamard
inequality for harmonically convex functions. Also we establish
several results for convex and harmonically convex functions. In
fact, we obtain some results for sum, difference, composition and
absolute value of these classes of functions.

1. INTRODUCTION AND PRELIMINARIES

Let f: I C R — R be a convex function defined on the interval I
of real numbers and a,b € I with a < b. The following inequality

a b X a
£ ;b)ébia/ fiz)dxéw (1.1)

holds, [2]. This double inequality is known in the literature as Hermite-
Hadamard integral inequality for convex functions. Note that some
of the classical inequalities for means can be derived from (1.1) by
appropriate selections of the mapping f. Both inequalities hold in the
reversed direction if f is concave. For some results which generalize,
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improve and extend the inequalities (1.1) we refer the reader to the
recent papers, see [1,3].

The main purpose of this paper is to introduce the concept of har-
monically convex functions (briefly HCF) and establish some results
connected with these classes of functions. In the end we obtained some
results for sum, difference, composition and absolute value of HCF.

Definition 1.1. Let I C R — {0} be a real interval. A function f :
I — R is said to be harmonically convex if

=gy < W +0-0f) (12)

for all z,y € I and t € [0, 1].
If the inequality in (1.2) is reversed, then f is said to be harmonically
concave.

Example 1.2. Let f : (0,00) — R, f(z) = cx, ¢ > 0 then f is an
HCF.

Proof. Because for all z,y € (0,00) and ¢ € [0, 1], we have (z —y)? > 0
and t(z — y)* — t*(x — y)* > 0, thus
c(tr? — 2tzy + ty? — t22* + 2622y — t2y* + 2y) > cvy
and
c(tr +y —ty)(ty + « — tx) > cxy.
Since # > 0,y > 0 and tx + (1 —t)y # 0, 7775, < clty + (1 — 1))

) tot(1—t)y
Therefore we have

G =gy SH W+ =05,

O]
In [2], the author gave the definition of HCF and established some

Hermite-Hadamard type inequalities for harmonically convex functions
as follows.

Theorem 1.3 (Theorem 1 in [2]). Let f: 1 CR—{0} — R be an
HCF and a,b € I with a < b. If f is integrable on |a,b] then the
following inequalities hold

) fla) + f(b)

f@
f(a+b _b—a/ dw< (1.3)
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2. MAIN RESULTS

The main purpose of this section is to establish some results about
HCF.

Theorem 2.1. Let f : I C R — {0} — R be an HCF and a,b € I
with a < b. If f is integrable on [a,b] then

nab Wb (M), mf) + (- m)f(a)
f()\la+ )\gb) = b—a u? du < n (2.1)
where
)\1:2m(1—@), /\2:71/—2777/(1—@), m,n €N
n n

Proof. Since f : I — R is an HCF, for all z,y € I (with 0 < t =
m/n < 1 in the inequality (1.2)) we have

o mf) & (0= m)f ()

mz + (n —m)y n

nxy

o

Choosing x =

and y = we get

ab ab
ta+(1—t)b th+(1—t)a’

nab m ab n—m ab
f()\1a+)\2b> = Ef(tb—i—(l—t)a)jL n f<ta—|—(1—t)b)'

Further, by integrating for ¢t € [0, 1], we have

ab

nab

T V< = -
f(/\la + )\gb) - n[m/o f(tb + (1 - t)a)dt
o) (S (2
o~ ta+(1—1)b '
Making the change of variables
ab B —(b—a)ab
Br-Da Y W= paptt =
in last integrals in (2.2), we have
[ = [ 1 23
th+ ( 1—t b—a ), u? u '

From (2.2) and (2.3), we have

nab - ab  [° f(u )

f()\1a+>\zb “b—a u2
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For the second inequality, use (1.2) with z = a ,y = b and get

ab mf(b) + (n—m)f(a)
f(tcH—(l—t)b) = n

Now, by integrating with respect to ¢ over [0, 1] from (2.5), we have
b R—
b [P mf(B) (0= m)f)

(2.5)

b—a ), u? n
This completes the proof. O

Proposition 2.2. (i) Let f,g : I ¢ R—{0} — R be HCF and
DyNDy# @. Then f+g,f — g are HCF.
(i) Let f: I C R—{0} — R be a HCF, g be a nondecreasing and
conver function such that Ry N Dy # &. Then go f is HCF.

Example 2.3. Let g(x) = ¢” and f be an HCF. Then it is clear that
(go f)(x) = e/® is HCF.
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