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©-CONNES MODULE AMENABILITY OF DUAL
BANACH ALGEBRAS

A. GHAFFART*, S. JAVADI AND E. TAMIMI

ABSTRACT. In this paper, we define p-Connes module amenability
of a dual Banach algebra A, where ¢ is a bounded module homo-
morphism from A to A that is wy«-continuous. We are mainly
concerned with the study of p-module normal, virtual diagonals.
We show that if S is a weakly cancellative and S is an inverse
semigroup with subsemigroup E of idempotents, x is a bounded
module homomorphism from [1(S) to I}(S) that is wg«-continuous
and [*(S) as a Banach module over [!(E) is x-Connes module
amenable, then it has a y-module normal, virtual diagonal. In
the case x = id, the converse also holds.

1. INTRODUCTION

Connes amenable dual Banach algebras were introduced by Runde
in [19]. In [20], Runde showed that if a Banach algebra is Connes
amenable, it has a normal, virtual diagonal. The interest in normal,
virtual diagonals arises from the fact that for a von Neumann algebra
A, Connes amenability of A is completely determined by the existence
of a normal, virtual diagonal. As noticed by Runde, the notion of a
normal, virtual diagonal adapts naturally to the context of general dual
Banach algebras. In [21], it is shown that M (G), the measure algebra
of a locally compact group G, is Connes amenable if and only if it has
a normal, virtual diagonal.
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In [1], Amini introduced the concept of module amenability for Ba-

nach algebras, and proved that when S is an inverse semigroup with
subsemigroup E of idempotents, then ['(S) as a Banach module over
U = [*(F) is module amenable if and only if S is amenable. Also, in
2], it is shown that ['(S)** is [*(E)-module amenable if and only if
an appropriate group homomorphic image of S is finite. We may refer
the reader e.g. to [1, 2, 3, 4, 5, 10], for extensive treatments of various
notions of module amenability.
All of these concepts generalized the earlier concept of amenability
for Banach algebras introduced by Johnson [12]. Recently, the au-
thors have introduced the ¢-version of Connes amenability of dual Ba-
nach algebra A that ¢ is a homomorphism from A onto C that lies
in A,[!1]. Let A be a dual Banach algebra with a compatible action
of a Banach algebra & and ¢ be a bounded module homomorphism
from A to A that is w+-continuous. In this paper, we introduce the
concept of p-Connes module amenability for A and give a character-
ization of p-Connes module amenability in terms of ¢-modul normal
virtual diagonals. In particular, we show that if x is a bounded module
homomorphism from !(S) to I!(S) that is wy+-continuous and I'(S) as
a Banach module over [!(E) is y-Connes module amenable, then it has
a y-module normal virtual diagonal. In the case xy = id, the converse
also holds, restoring [21, Theorem 1] for the case of measure algebra of
a discrete group.

2. MAIN RESULTS

Let A be a dual Banach algebra with predual A, and I/ be a Banach
algebra such that A is a Banach U-bimodule with compatible actions,
that is

a.(ab) = (a.a).b, (af).a = a.(B.a) (a,b€ A a, B €U).

Let E be a dual Banach A-bimodule. FE is called normal if for each
x € F, the maps

A= E, a—>{ziz

are wy+- continuous. If moreover F is a U{-bimodule such that fora € A,
a€EUandz e B

a.(az) = (aa).x, (a.a)r =a.(ax), (@.x).a=a.(z.0),

then E is called a normal Banach left A —U-module. Similarly for the
right and two sided actions. Also, F is called commutative, if

ar=za(a €U,z € E).
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A module homomorphism from A to A is a map ¢ : A — A with

pla+b) = ¢(a) +¢(b), plab) = p(a)p(b)
ola.a) = a.p(a), pla.a) =p(a).a (a,be A aceld).

Since A is a dual Banach algebra, then multiplication in A is wys-

continuous. Consider A as dual A-module with predual A,. So we

shall suppose that A takes wy--topology. HOM,, . (A) will denote the

space of all bounded module homomorphism that is wy-continuous.
A bounded map D : A — E is called a module ¢-derivation if

D(a+b) = D(a) £ D(b), D(ab) = D(a).(b) + ¢(a).D(b)
D(a.a) = a.D(a), D(a.c) = D(a).cx (a,b € A, € U).
When E is commutative, each x € E defines a module yp-derivation
D.(a) = p(a). x — z. p(a) (a € A).
Derivations of this form are called inner module p-derivation.

Definition 2.1. Let A be a dual Banach algebra, ¢4 be a Banach
algebra such that A is a Banach U-module and ¢ € HOM,,,. (A). A
is called p-Connes module amenable if for any commutative normal
Banach A-U-module E, each wy«- continuous module p-derivation D :
A — E is inner.

Recall that if ¢ is identity map on A, then id-Connes module amenabil-
ity is called Connes module amenability. Also, by the proof of [I,
Proposition 2.1], Connes amenability of A implies its Connes module
amenability in the case where U has a bounded approximate identity
for A. Example 9 shows that the converse is false. Hence Connes mod-
ule amenability is weaker than Connes amenability. Throughout this
paper, A is a Banach algebra that is a Banach U/-module.

Theorem 2.2. Let A be a dual Banach algebra and ¢ € HOM,,, . (A).
If ¢ is an epimorphism and A is p-Connes module amenable, then A
is Connes-module amenable.

Proof. Let E be a commutative normal Banach A — U-module and
D : A — FE be a wg-continuous module derivation. Set d = Dop. The
mapping d : A — E is a module o-derivation. Since ¢ € HOM,,. (A),
then d is wg+-continuous. Thus there exists f € E such that d(a) =
foola) —p(a). f for all a € A. Let b € A, there exists a € A such
that p(a) = b. Hence

D) = D(e(a) = d(a) = f. pla) = pla). f = f. b—b. f.

This shows that A is Connes-module amenable. O
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Theorem 2.3. Let A be a dual Arens regular Banach algebra and
o € HOM,,, . (A). Then the following are equivalent:

(i) A is ¢- Connes module amenable.

(i) A™ is p**-Connes module amenable.

Proof. (i)=-(ii) Let E be a commutative normal Banach A**—/-module
and D : A" — FE be a wy+-continuous module ¢**-derivation. Let @ :
A — A™ be the canonical map. It is known that 6 is wg«-continuous.
Define a module action of A on E by letting x @ a = x. 6(a), aex =
0(a). x (a € A,z € E). It can be shown that this module action is well
defined and turns £ into a normal Banach A — U/-module. We define
a derivation D : A — FE by letting D = D o . Then we have

D(ab) = Dof(ab) = Dof(a). ¢**(8(b)) + ¢**(A(a)). Do H(b)
= Dod(a). 0(p(b)) + 0(p(a)). Do 0d(b)

Dof(a)e (p(b)—{—go() Do 6(b)

b )

Thus D is a module o-derivation that is wg--continuous. Since A is
p-Connes module amenable, then there exists € E such that

B(a) = Do@(a): e p(a)—p(a)e x
= z.0(p(a)) — 0(¢(a)). x.

Let G € A*™. As 0(A) is wy+-dense in A**, there exists a net {g,} in
A such that 0(g,) — G in the wg«-topology. Also it is known that ¢**
is wg«-continuous, then ©**(0(g.)) — ©**(G). Hence

D(G)=1limDof(g,) = limz. 0op(gs) —00¢@(ga) x
= limz. 060(gs) —pob(ga) @
= 2. "(G) — " (G). @

(ii)=(i) Let F be a commutative normal Banach A-U/-module and D :
A — E be a wy+-continuous module p-derivation. Let 7 : (A,)** —
(AL)* by m(F) = F |ga,) be the Dixmier projection. It is well known
that the Dixmier projection from A** onto A is a module homomor-
phism [I1]. Then E is a Banach A**-U/-module with the bimodule
multiplications

Fex=xn(F).z, ve F=z n(F)(re EFeA™).
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It is routinely checked that F is a commutative normal Banach A**-U-
module. Now set D o : A — E. We have

Don(FG) = D(n(F)n(G ))—DOW(F) pom(G)+ pom(F). Dor(QG)
= Don(F). ¢ on(G)+ ¢ on(F). Don(G)
= Don(F). n(¢™(G)) + 7 (™ (F)). Don(G)
= Don(F)e ¢"(G)+¢"(F)e Dom(G).

Since A** is p**-Connes module amenable, then there exists z € F
such that

Don(F) = ¢"(F)e x—xe ¢"(F) = n(¢™(F)). . (4" (F))
— " (x(F)). 2 - 2. ¢ (x(F)).

Therefore D(a) = ¢(a). © — x. p(a) for all a € A, and hence D is
inner. 0J

Theorem 2.4. Let A be a commutative dual Banach algebra and ¢ €
HOM,,.(A). If A is p-Connes module amenable, then A has a bounded
approzimate identity for ¢(A).

Proof. Let A be a commutative Banach A-U-module whose underlying
space is A, but on which A acts via
a.x:=ax, v.a:=0 (a € A,z € A).
Let I : A — A be the identity map. It is easy to see that I o ¢ is
a module (p-derivation. Since A is p-Connes module amenable, there
exists e € A such that
Tog(a) = ¢(a). e—e. p(a)
pla) = la). e

The element e has the desired properties. O
Theorem 2.5. Let A be a dual Banach algebra and ¢ € HOM,,, . (A).

If A is o-Connes module amenable, then A is )\ o p-Connes module
amenable for any A € HOM,, . (A).

Proof. Let E be a commutative normal Banach A — U-module and
D : A — FE be a module \ o ¢-derivation that is wg«- continuous. If F
is equipped with the module operation by

aexr=\a). z, rea=x. Na), (a€ Az € E)

then E becomes a commutative normal Banach A — U-module. We
have

D(ab) = D(a). Ao w(b)+ Xop(a). D(b)
= D(a) e p(b)+ ¢(a)e D(b).
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Thus, there exists f € F such that

D(a) = fep(a)—p(a)e f=f Aow(a) —Aop(a). f(a€A).
This shows that D is inner. O

Theorem 2.6. Let A be a unital dual Banach algebra and also ¢ €
HOM,,.(A). Then A is p-Connes module amenable if and only if
for any unital commutative Banach A-U-module E, each module -
derivation D : A — E is inner.

Proof. Let E be a commutative normal Banach A-U/-bimodule with
predual E,, and consider [ : E — E and r : E — FE by l(x) = eyx
and r(z) = zeq. put By = (id —1)or(E), Ey = (id — r) o l(E),
E; = (id — 1) o (id — r)(E) and Ey = lor(E). The verification that
E = FE & FEy,® Es @ Ej is routine. It is the diect sum of E; for
1t =1,2,3,4. Then E; is equipped with the module operation by

(r —eqx). a=z.a—eyx. a, a(r —eqr) =a. x —a. eqx =0

It is easy to see that F; is a commutative normal Banach A-U/-bimodule
by predual (1 — ey).FEy.eq. Let m : B — FE; be the projection map.
Then 7, o D is a module ¢-derivation from A to E; that is wg«- con-
tinuous. Since A has a left zero action on F4, then we have

moD(a) = moD(eq.a)=m10D(eq).p(a)+ pleq).m o D(a)
= m o D(ea).p(a) =m o D(ea).p(a) — pla).m o D(ea)
Also, a routine verification shows that m0D = adr,op(e,) and T30 D =
0.
Now, let my 0o D : A — FEj4. It is obvious that w4 o D is a module
p-derivation. We can show that F, is a commutative normal Banach

A-U-bimodule with predual e4.F,.e4. By our assumption, 74 o D is
inner. 0

Let A and U are dual Banach algebras. Let A be a dual Banach
U-module and A®.A denote the projective tensor product of A and A.
Let A, ®, A, be the injective tensor product of A, with itself. Then
we have a canonical map from A®A into (A, ®,,.A,)* which has closed
range if A has the bounded approximation property. For more details,
see [18]. Let I be the closed ideal of A®.A generated by elements of the
form a.(a ® b) — (a ® b).a, for a,b € A and a € U. AXyA is defined

A[ ]. Let J be the closed ideal
of A generated by elements of the form (a.a).b — a.(b.«). Since J is

to be the quitiont Banach space

weak*-closed, then the quotient algebra 7 is again dual with predual
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ARA

AI

79
. . A

denote the separately wy«-continuous 2-linear maps from i X Wi to C.

Note that the dual Banach A-U-module £ . (é, C) need not be normal.

Ll ={¢p € A, :{(¢,a) =0 for all @ € J}. Moreover, A<y A =

and é could be regarded as a Banach A-U-module. Let L£2.(

. A
Let w : ARy A — ¥ be the multiplication operator, w(a @ b+ I) =
ab 4+ J. Since the quotient map is continuous and open, then it is

immediate that @* maps +J into £2. (?, C). It follows that @w** drops
to an A-U-module homomorphism w** : L%(?,C)* — ? Recall a
few definitions from [10](with a different notation, however). Given

Fer2 (2.C)and Me 2.

7 C)*, we put

77
(M, F) _/FdM =: Fla+ J,b+ J)dM(a+ J,b+ J).
A&y A

More generally, let E/ be a dual Banach space and let F': ? X ? — F

be a bilinear map such that a +J — F(a+ J,b+ J) and b+ J —
F(a+ J,b+ J) are wy+- continuous. We define [ FdM € E by

(/Fd]\/[, z) :/(F(a+J,b+J),:c>dM(a+J,b+J),

where a,b € A,z € E,. Let ¢ € HOM,,.(A) such that p(J) C J.

Then the map @ : ? — ? by ¢(a+J) = ¢(a)+ J could be considered

as an element of HOM,, . (7)

Definition 2.7. Let A be a dual Banach algebra. An element M €
L2, (é, C)* is called a ¢p-module normal virtual diagonal for A if @w**(M)

p(A)
J

and

is an identity for
M. p(c+J)=¢(c+J). M (c € A).

Note that with the above notation M. (¢ + J) = (¢ + J). M is
equivalent to

/F(ca+J,b+J)dM(a+J,b+J):/F(a+J,bc+J)dM(a+J,b+J).
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Theorem 2.8. Let A and U be dual Banach algebras, let A be a unital
dual Banach U- module and let A has an id-module normal virtual
diagonal. Then A is id-Connes module amenable.

Proof. Let E be a commutative normal Banach A-U/-module. We first
note that A has an identity. From Theorem 5, it is therefore sufficient
for A to be id-Connes module amenable that we suppose that F is
unital. Let D : A — E be a module derivation that is wy«- continuous.

It is straightforward to see that E is a normal Banach —-U-module.
Let £ = (E.)*. Since E is commutative, then D = 0 on J. Thus we

have D : ? — E, D(a+J):= D(a) (a € A). To cach = € E,, there

corresponds V, : § X ? — Cvia Vy(a+ J,b+J) = (z,(a+ J)D(b +
A

J))(a,b € A). Tt is routinely checked that V, € Efu*(j,
a,be A and a, € A, we have

C). For each

(/ab+JdM,a*+Jl> = (/w(a®b+1)dM,a*+Ji>
_ /(w(a®b+1),a*+J¢>dM
= /(a®b+l,w*(a*+JL))dM

= (/a® b+ IdM, 0" (a, + J*5))
= (M, 0" (a, + J)) = (@™ (M), a, +J5),
Now, put f(x) = (M, v,)(x € E,). Let ¢ € A. We have

+J). f—f (c+J), x)
z. (c+J)—(c+J). x)
M, Vi (crd)—(c+J). o)

/V;E (c+J)—(c+J). m(a + J,b+ J)dM
_ / (2. (c+J) = (c+J). 2, (a+J) Db+ J)dM
= / (z, (c+ J)(a+ J)Db+J) — (a+ J)DB+ J)(c+ J))dM

_ / (2, (cat+ DDb+J) — (a+ )D(b+ T)c+ J))dM,
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and so
( (c+d). f—=f (c+J), x)
— / (z, (a+ J)D(bc+J) — (a+ J)D(b+ J)(c+ J))dM

_ /(x, (a+J)D(b+ J)(c+ J) + (a+ T)(b+ J)D(c + J)
— (a+ J)D(b+ J)(c+ J))dM
_ /((a+J)(b+J)D(C+J)7 z)dM

= /((ab—i—J)D(c+J), x)ydM

_ /((ab+ J), @)ydM.D(c + J)
= (@™ (M). D(c+J), ).
All in all, D(c) = c¢. f — f. ¢ holds. O

Let A be a commutative Banach ¢-bimodule. Consider A&y A with
the product specified by (a ®b)(c®d) = ac® bd. Let ¢ @ ¢ denote the
element of HOM,, ., (A®.A) satisfying ¢ ® p(a @ b) = ¢(a) @ ¢(b) for
all a, b € A. p ® ¢ induces a map ¢ ®y ¢ € HOM,,. (A®yA) with
 Qu pla®b) = pla) ® (b) + 1 [7].

Theorem 2.9. Let A and U be dual Banach algebras, let A be a unital
dual Banach U- module and let AQyA be a dual Banach algebra and
¢ € HOM,,.(A). If A is p-Connes module amenable, then A&y.A is
» ®y p-Connes module amenable.

Proof. Let E be a commutative normal Banach A&y A-U-module and
D : A%y A — E be a module ¢ ®;, p-derivation that is wy«- continuous.
Consider the quotient map 7 : AQA — Ay A. Define

(a®b). z=m(a®b)© z, . (a®b) =26 7(a®Db) (a,b€ Ax € F)

Since 7 is wy+- continuous, then E is a normal Banach A&.A-U-module.
Put Dor: AQA — E. Tt is easy to see that Do is a module YR p-
derivation that is wg«- continuous. If Doris inner, then D is inner.
Therefore in the following we prove that D = D o 7 is inner. For with
e4 an identity for A we define

ah z=(a®ey) z, A a=2x. (a®ey) (a€ A, v €F).
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Forae A, x € E and o € U, we get

abd (a.z)—(a.a)r z = (a®ey). (. ) — (a. a®ey). x
= (a®ey). (a.z) — (0. a®ey). x
= (a®ey). (a.z)— (. (a®ey)). x
= (a®ey). (a.z)— ((a®eq). a). x
)= (

= (a®ey). (a. x

and the same for the right or two-sided actions. So F is a commutative
normal Banach A-U-bimodule. Put Dy : A — E, Da(a) = D(a®e4),
then

Da(ab) = D(ab®ey)
= Da®ey) o@pb®es)+o@pla®eq). Db®ey)
= Da(a) & »(b) + ¢(a) & Da(b).

Since A is p-Connes module amenable, there is u € E such that D4 =
ad,. Therefore, D = D — ad, vanishes on A ® e4. Setting

aVx=(eg®a). z, zVa=zx. (eg®a) (a€ A, x € F)

makes F into an A-U-bimodule. Let us now, D/y(a) = D(ea ® a)(a €
A). Set K = {e € E, : (D(e4a ®a), ey = 0}. Since D is wys-
continuous, by a similar argument of [17, Theorem 4.9] we have (£2)* =

D(es®a) ". Further, D(eq®a) = is a wy-closed submodule of E.

*

All in all D(eg ® a) * is a commutative normal Banach A-U-module.

Then there is v € D(e4 ® a)wk such that

D(ea®a) = D'y(a) = p(a)Vv—rvVp(a) = p@p(es®a). v—v. pRp(es®a)
and D — adyl(e 04y = {0}. Consequently D —ad, = D — ad, — ad,
vanishes on A®.A. This complete the proof. O

3. X—CONNES MODULE AMENABILITY OF SEMIGROUP ALGEBRAS

A discrete semigroup S is called an inverse semigroup if for each
x € S there is a unique element x* € S such that zaz*z = x and
r*rr* = z*. An element e € S is called an idempotent if e = e* = €.
The set of idempotent elements of S is denoted by E. For s € S, we
define Ly, Ry : S — S by Lg(t) = st, Rs(t) = ts, (t € S). If for each
s €S, Ly and R, are finite-to-one maps, then we say that S is weakly
cancellative.

Before turning our result, we note that if S is a weakly cancellative
semigroup, then [!(S) is a dual Banach algebra with predual cq(S)[3].
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In Theorem 2.8 it is shown that if a unital Banach algebra A has
an id-module normal virtual diagonal, then A is id-Connes module
amenable. It would be interesting to know that the converse holds for
inverse semigroup algebra [*(S).

For an inverse semigroup S, we consider an equivalence relation on S
where s ~ t if and only if there is e € E such that se = te. The

quotient semigroup Sg = — is a group [13]. It is easy to see that F is

a commutative subsemigroup of S. Therefore, [*(S) is a Banach I!(E)-
module with compatible canonical actions. Let [!(E) acts on I*(S) by
the multiplication from right and trivially from left, that is

5005 = g, 050, = 0, = 0y % 0, (5 € S,e € E).

With above notation, I*(Sg) is a quotient of {'(S) and so the above
action of [*(E) on *(9) lifts to an action of ['(E) on [*(Sg), making it
a Banach ['(F)-module [1].

Theorem 3.1. Let S be a weakly cancellative semigroup. Let S be an
inverse semigroup with idempotents E, let 1*(S) be a Banach I*(E)-
module and let x € HOM,,,(I*(S)). If I'(S) is x-Connes module

amenable, then I1(S) has a x-module normal virtual diagonal.

Proof. Let m : S — Sg be the quotient map. By [l, Lemma 3.2, we
define a bimodule action of [*(S) on I°°(Sg) by
0s. T = On(s) % T, T. 05 = T * 05y (s €5, € 17(5)).

Since ¢o(S¢) is an introverted subspace of 1°(Sg) [9], then [*°(Sg)*
is a normal Banach ['(S)-I'(E)-module. Choose n € [*(Sg)* with
(n,1) = 1, and define D : [}(S) — 1®(Sg)* by D(d,) = x(ds). n —
n. x(0s). Moreover, D attains its values in the weak*-closed submodule
(loo(SG)
C

1>°(S
Consequently, there exists 1 € (%)* such that D(ds) = ads, so

)Z((STK'(S)) n—mn. X(éﬂ'(s)) = X(éﬂ'(s)) n—n. 5((571'(5))
For each f € 1>(S¢),
<>~<(6ﬂ'(s)) (TL - ﬁ) - (TL - ﬁ) )2(571'(5))’ f> = 0.
Now put m :=n —n € [*°(Sg)*, we have
<>2<57r(s)) m—m. X(&r(s)% f> = 0.

By a similar argument as in [18, Lemma 7.1.1], there exists a net { f,}
of I'(S¢) such that [ f, =1 and || X(0x(s)) * fa — fa * X(0r(s)) ||— 0.

)*. Since I1(S) is xy-Connes module amenable, then D is inner.
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Now let f € co(Sg x Sg). Take € > 0 and consider a compact set K
such that || f(z)||s,\x < v/€ and

- €
Sup || X(0s(0) * fo — o * X0 1<
sek 1711
Since the quotient map is continuous and open, then by [20, Proposition

3.1] we have L2  (I'(S¢),C) = co(Sg % Sg). Then we may define

(M. 1) =tim [ 76 X)) o)

By the above argument, for each s € S there exists g such that for
each o > g, || X(0r(s)) * fa — fa ¥ X(0rs)|| < % Hence

( X(On(s)) M =M. X(0r(5)); f) = (M, f. X(0r(s)) = X(0n(s))- [f)
= lim / (f (X(Or(syma))s X(Or@)) = (>~<(57r(:c*)),>~<(57r(u)))>fa($)dfc

< |’fHSG\KH>~<(57F(S)) * fa - fa * >~(<57r(s))H
+ [ fll&l[X(0x(s)) * fa — fa * X(xs) || < €.
Also for each s

W (M) X(0n(s) = (M, 0" (X(0n(s))))

= lm | X(6x(s)0r(e*)0n(x)) fa(®)dx

= lim (0o / falw)dr = X(6,00).
Consequently, M is a y-normal module virtual diagonal for [}(S). O

Corollary 3.2. Let S be a weakly cancellative semigroup, let S be an
inverse semigroup with idempotents E and let I*(S) be a Banach I*(E)-
module. Then the following are equivalent:

(i) 11(S) is Connes module amenable.

(i) {1(S) has a module normal virtual diagonal.

Proof. This follows immediately from Theorem 2.8 and Theorem 3.1.
O

Example 10. Let (N, V) be the semigroup of positive integers with
maximum operation. Since N is weakly cancellative, then [}(N) is a
dual Banach algebra with predual ¢y(N). By [, Theorem 5.13], I'(N)
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is not Connes amenable. Moreover [!(N) is module amenable on ' ( Ey),
so it is Connes module amenable (see [2]).
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