Journal of Algebraic Systems Vol. 8, No. 1, (2020), pp 69-82

$\varphi\text{-}\mathrm{CONNES}$ MODULE AMENABILITY OF DUAL BANACH ALGEBRAS

A. GHAFFARI*, S. JAVADI AND E. TAMIMI

ABSTRACT. In this paper, we define φ -Connes module amenability of a dual Banach algebra \mathcal{A} , where φ is a bounded module homomorphism from \mathcal{A} to \mathcal{A} that is w_{k^*} -continuous. We are mainly concerned with the study of φ -module normal, virtual diagonals. We show that if S is a weakly cancellative and S is an inverse semigroup with subsemigroup E of idempotents, χ is a bounded module homomorphism from $l^1(S)$ to $l^1(S)$ that is w_{k^*} -continuous and $l^1(S)$ as a Banach module over $l^1(E)$ is χ -Connes module amenable, then it has a χ -module normal, virtual diagonal. In the case $\chi = id$, the converse also holds.

1. INTRODUCTION

Connes amenable dual Banach algebras were introduced by Runde in [19]. In [20], Runde showed that if a Banach algebra is Connes amenable, it has a normal, virtual diagonal. The interest in normal, virtual diagonals arises from the fact that for a von Neumann algebra \mathcal{A} , Connes amenability of \mathcal{A} is completely determined by the existence of a normal, virtual diagonal. As noticed by Runde, the notion of a normal, virtual diagonal adapts naturally to the context of general dual Banach algebras. In [21], it is shown that M(G), the measure algebra of a locally compact group G, is Connes amenable if and only if it has a normal, virtual diagonal.

MSC(2010): Primary: 22D15; Secondary: 43A10.

Keywords: Banach algebra, module amenability, derivation, semigroup algebra.

Received: 29 May 2019, Accepted: 6 December 2019.

^{*}Corresponding author.

In [1], Amini introduced the concept of module amenability for Banach algebras, and proved that when S is an inverse semigroup with subsemigroup E of idempotents, then $l^1(S)$ as a Banach module over $\mathcal{U} = l^1(E)$ is module amenable if and only if S is amenable. Also, in [2], it is shown that $l^1(S)^{**}$ is $l^1(E)$ -module amenable if and only if an appropriate group homomorphic image of S is finite. We may refer the reader e.g. to [1, 2, 3, 4, 5, 16], for extensive treatments of various notions of module amenability.

All of these concepts generalized the earlier concept of amenability for Banach algebras introduced by Johnson [12]. Recently, the authors have introduced the ϕ -version of Connes amenability of dual Banach algebra \mathcal{A} that ϕ is a homomorphism from \mathcal{A} onto \mathbb{C} that lies in $\mathcal{A}_*[11]$. Let \mathcal{A} be a dual Banach algebra with a compatible action of a Banach algebra \mathcal{U} and φ be a bounded module homomorphism from \mathcal{A} to \mathcal{A} that is w_{k^*} -continuous. In this paper, we introduce the concept of φ -Connes module amenability for \mathcal{A} and give a characterization of φ -Connes module amenability in terms of φ -modul normal virtual diagonals. In particular, we show that if χ is a bounded module homomorphism from $l^1(S)$ to $l^1(S)$ that is w_{k^*} -continuous and $l^1(S)$ as a Banach module over $l^1(E)$ is χ -Connes module amenable, then it has a χ -module normal virtual diagonal. In the case $\chi = id$, the converse also holds, restoring [21, Theorem 1] for the case of measure algebra of a discrete group.

2. Main results

Let \mathcal{A} be a dual Banach algebra with predual \mathcal{A}_* and \mathcal{U} be a Banach algebra such that \mathcal{A} is a Banach \mathcal{U} -bimodule with compatible actions, that is

$$\alpha.(ab) = (\alpha.a).b, \ (\alpha\beta).a = \alpha.(\beta.a) \ (a, b \in \mathcal{A}, \alpha, \beta \in \mathcal{U}).$$

Let E be a dual Banach \mathcal{A} -bimodule. E is called *normal* if for each $x \in E$, the maps

$$\mathcal{A} \to E, \ a \to \begin{cases} a.x \\ x.a \end{cases}$$

are w_{k^*} - continuous. If moreover E is a \mathcal{U} -bimodule such that for $a \in \mathcal{A}$, $\alpha \in \mathcal{U}$ and $x \in E$

$$\alpha.(a.x) = (\alpha.a).x, \ (a.\alpha).x = a.(\alpha.x), \ (\alpha.x).a = \alpha.(x.a),$$

then E is called a normal Banach left $\mathcal{A} - \mathcal{U}$ -module. Similarly for the right and two sided actions. Also, E is called *commutative*, if

$$\alpha . x = x . \alpha \ (\alpha \in \mathcal{U}, x \in E).$$

A module homomorphism from \mathcal{A} to \mathcal{A} is a map $\varphi : \mathcal{A} \to \mathcal{A}$ with

$$\varphi(a+b) = \varphi(a) + \varphi(b), \ \varphi(ab) = \varphi(a)\varphi(b)$$
$$\varphi(\alpha.a) = \alpha.\varphi(a), \ \varphi(a.\alpha) = \varphi(a).\alpha \ (a,b \in \mathcal{A}, \alpha \in \mathcal{U}).$$

Since \mathcal{A} is a dual Banach algebra, then multiplication in \mathcal{A} is w_{k^*} continuous. Consider \mathcal{A} as dual \mathcal{A} -module with predual \mathcal{A}_* . So we
shall suppose that \mathcal{A} takes w_{k^*} -topology. $\mathcal{HOM}_{w_{k^*}}(\mathcal{A})$ will denote the
space of all bounded module homomorphism that is w_{k^*} -continuous.

A bounded map $D: \mathcal{A} \to E$ is called a module φ -derivation if

$$D(a \pm b) = D(a) \pm D(b), D(ab) = D(a).\varphi(b) + \varphi(a).D(b)$$
$$D(\alpha.a) = \alpha.D(a), D(a.\alpha) = D(a).\alpha \ (a, b \in \mathcal{A}, \alpha \in \mathcal{U}).$$

When E is commutative, each $x \in E$ defines a module φ -derivation

 $D_x(a) = \varphi(a). \ x - x. \ \varphi(a) \ (a \in \mathcal{A}).$

Derivations of this form are called *inner module* φ -*derivation*.

Definition 2.1. Let \mathcal{A} be a dual Banach algebra, \mathcal{U} be a Banach algebra such that \mathcal{A} is a Banach \mathcal{U} -module and $\varphi \in \mathcal{HOM}_{w_{k^*}}(\mathcal{A})$. \mathcal{A} is called φ -Connes module amenable if for any commutative normal Banach \mathcal{A} - \mathcal{U} -module E, each w_{k^*} - continuous module φ -derivation D: $\mathcal{A} \to E$ is inner.

Recall that if φ is identity map on \mathcal{A} , then id-Connes module amenability is called Connes module amenability. Also, by the proof of [1, Proposition 2.1], Connes amenability of \mathcal{A} implies its Connes module amenability in the case where \mathcal{U} has a bounded approximate identity for \mathcal{A} . Example 9 shows that the converse is false. Hence Connes module amenability is weaker than Connes amenability. Throughout this paper, \mathcal{A} is a Banach algebra that is a Banach \mathcal{U} -module.

Theorem 2.2. Let \mathcal{A} be a dual Banach algebra and $\varphi \in \mathcal{HOM}_{w_{k^*}}(\mathcal{A})$. If φ is an epimorphism and \mathcal{A} is φ -Connes module amenable, then \mathcal{A} is Connes-module amenable.

Proof. Let E be a commutative normal Banach $\mathcal{A} - \mathcal{U}$ -module and $D: \mathcal{A} \to E$ be a w_{k^*} -continuous module derivation. Set $d = D \circ \varphi$. The mapping $d: \mathcal{A} \to E$ is a module φ -derivation. Since $\varphi \in \mathcal{HOM}_{w_{k^*}}(\mathcal{A})$, then d is w_{k^*} -continuous. Thus there exists $f \in E$ such that $d(a) = f. \varphi(a) - \varphi(a)$. f for all $a \in \mathcal{A}$. Let $b \in \mathcal{A}$, there exists $a \in \mathcal{A}$ such that $\varphi(a) = b$. Hence

$$D(b) = D(\varphi(a)) = d(a) = f. \varphi(a) - \varphi(a). f = f. b - b. f$$

This shows that \mathcal{A} is Connes-module amenable.

Theorem 2.3. Let \mathcal{A} be a dual Arens regular Banach algebra and $\varphi \in \mathcal{HOM}_{w_{k^*}}(\mathcal{A})$. Then the following are equivalent: (i) \mathcal{A} is φ - Connes module amenable. (ii) \mathcal{A}^{**} is φ^{**} -Connes module amenable.

Proof. (i) \Rightarrow (ii) Let E be a commutative normal Banach $\mathcal{A}^{**}-\mathcal{U}$ -module and $D: \mathcal{A}^{**} \to E$ be a w_{k^*} -continuous module φ^{**} -derivation. Let $\theta: \mathcal{A} \to \mathcal{A}^{**}$ be the canonical map. It is known that θ is w_{k^*} -continuous. Define a module action of \mathcal{A} on E by letting $x \bullet a = x$. $\theta(a), a \bullet x = \theta(a)$. $x \ (a \in \mathcal{A}, x \in E)$. It can be shown that this module action is well defined and turns E into a normal Banach $\mathcal{A} - \mathcal{U}$ -module. We define a derivation $\tilde{D}: \mathcal{A} \to E$ by letting $\tilde{D} = D \circ \theta$. Then we have

$$\begin{split} \tilde{D}(ab) &= D \circ \theta(ab) = D \circ \theta(a). \ \varphi^{**}(\theta(b)) + \varphi^{**}(\theta(a)). \ D \circ \theta(b) \\ &= D \circ \theta(a). \ \theta(\varphi(b)) + \theta(\varphi(a)). \ D \circ \theta(b) \\ &= D \circ \theta(a) \bullet \ \varphi(b) + \varphi(a) \bullet \ D \circ \theta(b) \\ &= \tilde{D}(a) \bullet \ \varphi(b) + \varphi(a) \bullet \ \tilde{D}(b). \end{split}$$

Thus \tilde{D} is a module φ -derivation that is w_{k^*} -continuous. Since \mathcal{A} is φ -Connes module amenable, then there exists $x \in E$ such that

$$\tilde{D}(a) = D \circ \theta(a) = x \bullet \varphi(a) - \varphi(a) \bullet x$$
$$= x \cdot \theta(\varphi(a)) - \theta(\varphi(a)) \cdot x.$$

Let $G \in \mathcal{A}^{**}$. As $\theta(\mathcal{A})$ is w_{k^*} -dense in \mathcal{A}^{**} , there exists a net $\{g_\alpha\}$ in \mathcal{A} such that $\theta(g_\alpha) \to G$ in the w_{k^*} -topology. Also it is known that φ^{**} is w_{k^*} -continuous, then $\varphi^{**}(\theta(g_\alpha)) \to \varphi^{**}(G)$. Hence

$$D(G) = \lim_{\alpha} D \circ \theta(g_{\alpha}) = \lim_{\alpha} x. \ \theta \circ \varphi(g_{\alpha}) - \theta \circ \varphi(g_{\alpha}). \ x$$
$$= \lim_{\alpha} x. \ \varphi \circ \theta(g_{\alpha}) - \varphi \circ \theta(g_{\alpha}). \ x$$
$$= x. \ \varphi^{**}(G) - \varphi^{**}(G). \ x$$

(ii) \Rightarrow (i) Let *E* be a commutative normal Banach \mathcal{A} - \mathcal{U} -module and D: $\mathcal{A} \to E$ be a w_{k^*} -continuous module φ -derivation. Let $\pi : (\mathcal{A}_*)^{***} \to (\mathcal{A}_*)^*$ by $\pi(F) = F \mid_{\theta(\mathcal{A}_*)}$ be the Dixmier projection. It is well known that the Dixmier projection from \mathcal{A}^{**} onto \mathcal{A} is a module homomorphism [14]. Then *E* is a Banach \mathcal{A}^{**} - \mathcal{U} -module with the bimodule multiplications

$$F \bullet x = \pi(F). \ x, \ x \bullet F = x. \ \pi(F) \ (x \in E, F \in \mathcal{A}^{**}).$$

It is routinely checked that E is a commutative normal Banach \mathcal{A}^{**} - \mathcal{U} module. Now set $D \circ \pi : \mathcal{A}^{**} \to E$. We have

$$D \circ \pi(FG) = D(\pi(F)\pi(G)) = Do\pi(F). \ \varphi \circ \pi(G) + \varphi \circ \pi(F). \ Do\pi(G)$$

$$= D \circ \pi(F). \ \varphi^{**} \circ \pi(G) + \varphi^{**} \circ \pi(F). \ D \circ \pi(G)$$

$$= D \circ \pi(F). \ \pi(\varphi^{**}(G)) + \pi(\varphi^{**}(F)). \ D \circ \pi(G)$$

$$= D \circ \pi(F) \bullet \ \varphi^{**}(G) + \varphi^{**}(F) \bullet \ D \circ \pi(G).$$

Since \mathcal{A}^{**} is $\varphi^{**}\text{-}\mathrm{Connes}$ module amenable, then there exists $x\in E$ such that

$$Do\pi(F) = \varphi^{**}(F) \bullet x - x \bullet \varphi^{**}(F) = \pi(\varphi^{**}(F)). x - x. \pi(\varphi^{**}(F))$$

= $\varphi^{**}(\pi(F)). x - x. \varphi^{**}(\pi(F))$

Therefore $D(a) = \varphi(a)$. x - x. $\varphi(a)$ for all $a \in \mathcal{A}$, and hence D is inner.

Theorem 2.4. Let \mathcal{A} be a commutative dual Banach algebra and $\varphi \in \mathcal{HOM}_{w_{k^*}}(\mathcal{A})$. If \mathcal{A} is φ -Connes module amenable, then \mathcal{A} has a bounded approximate identity for $\varphi(\mathcal{A})$.

Proof. Let \mathcal{A} be a commutative Banach \mathcal{A} - \mathcal{U} -module whose underlying space is \mathcal{A} , but on which \mathcal{A} acts via

a.
$$x := ax, x. a := 0 \ (a \in \mathcal{A}, x \in \mathcal{A}).$$

Let $I : \mathcal{A} \to \mathcal{A}$ be the identity map. It is easy to see that $I \circ \varphi$ is a module φ -derivation. Since \mathcal{A} is φ -Connes module amenable, there exists $e \in \mathcal{A}$ such that

$$I \circ \varphi(a) = \varphi(a). \ e - e. \ \varphi(a)$$

$$\varphi(a) = \varphi(a). \ e.$$

The element e has the desired properties.

Theorem 2.5. Let \mathcal{A} be a dual Banach algebra and $\varphi \in \mathcal{HOM}_{w_{k^*}}(\mathcal{A})$. If \mathcal{A} is φ -Connes module amenable, then \mathcal{A} is $\lambda \circ \varphi$ -Connes module amenable for any $\lambda \in \mathcal{HOM}_{w_{k^*}}(\mathcal{A})$.

Proof. Let E be a commutative normal Banach $\mathcal{A} - \mathcal{U}$ -module and $D : \mathcal{A} \to E$ be a module $\lambda \circ \varphi$ -derivation that is w_{k^*} - continuous. If E is equipped with the module operation by

$$a \bullet x = \lambda(a). x, x \bullet a = x. \lambda(a), (a \in \mathcal{A}, x \in E)$$

then E becomes a commutative normal Banach $\mathcal{A} - \mathcal{U}$ -module. We have

$$D(ab) = D(a). \ \lambda \circ \varphi(b) + \lambda \circ \varphi(a). \ D(b)$$

= $D(a) \bullet \varphi(b) + \varphi(a) \bullet D(b).$

Thus, there exists $f \in E$ such that

$$D(a) = f \bullet \varphi(a) - \varphi(a) \bullet f = f. \ \lambda \circ \varphi(a) - \lambda \circ \varphi(a). \ f \ (a \in \mathcal{A}).$$

This shows that D is inner.

Theorem 2.6. Let \mathcal{A} be a unital dual Banach algebra and also $\varphi \in \mathcal{HOM}_{w_{k^*}}(\mathcal{A})$. Then \mathcal{A} is φ -Connes module amenable if and only if for any unital commutative Banach \mathcal{A} - \mathcal{U} -module E, each module φ -derivation $D : \mathcal{A} \longrightarrow E$ is inner.

Proof. Let E be a commutative normal Banach \mathcal{A} - \mathcal{U} -bimodule with predual E_* , and consider $l: E \longrightarrow E$ and $r: E \longrightarrow E$ by $l(x) = e_{\mathcal{A}}x$ and $r(x) = xe_{\mathcal{A}}$. put $E_1 = (id - l) \circ r(E)$, $E_2 = (id - r) \circ l(E)$, $E_3 = (id - l) \circ (id - r)(E)$ and $E_4 = l \circ r(E)$. The verification that $E = E_1 \oplus E_2 \oplus E_3 \oplus E_4$ is routine. It is the diect sum of E_i for i = 1, 2, 3, 4. Then E_1 is equipped with the module operation by

$$(x - e_{\mathcal{A}}x). \ a = x. \ a - e_{\mathcal{A}}x. \ a, \ a(x - e_{\mathcal{A}}x) = a. \ x - a. \ e_{\mathcal{A}}.x = 0$$

It is easy to see that E_1 is a commutative normal Banach \mathcal{A} - \mathcal{U} -bimodule by predual $(1 - e_{\mathcal{A}}).E_*.e_{\mathcal{A}}$. Let $\pi_1 : E \longrightarrow E_1$ be the projection map. Then $\pi_1 \circ D$ is a module φ -derivation from \mathcal{A} to E_1 that is w_{k^*} - continuous. Since \mathcal{A} has a left zero action on E_1 , then we have

$$\pi_1 \circ D(a) = \pi_1 \circ D(e_{\mathcal{A}}.a) = \pi_1 \circ D(e_{\mathcal{A}}).\varphi(a) + \varphi(e_{\mathcal{A}}).\pi_1 \circ D(a)$$
$$= \pi_1 \circ D(e_{\mathcal{A}}).\varphi(a) = \pi_1 \circ D(e_{\mathcal{A}}).\varphi(a) - \varphi(a).\pi_1 \circ D(e_{\mathcal{A}})$$

Also, a routine verification shows that $\pi_2 o D = a d_{\pi_2 \circ D(e_A)}$ and $\pi_3 \circ D = 0$.

Now, let $\pi_4 \circ D : \mathcal{A} \longrightarrow E_4$. It is obvious that $\pi_4 \circ D$ is a module φ -derivation. We can show that E_4 is a commutative normal Banach \mathcal{A} - \mathcal{U} -bimodule with predual $e_{\mathcal{A}}.E_*.e_{\mathcal{A}}$. By our assumption, $\pi_4 \circ D$ is inner.

Let \mathcal{A} and \mathcal{U} are dual Banach algebras. Let \mathcal{A} be a dual Banach \mathcal{U} -module and $\mathcal{A} \otimes \mathcal{A}$ denote the projective tensor product of \mathcal{A} and \mathcal{A} . Let $\mathcal{A}_* \otimes_w \mathcal{A}_*$ be the injective tensor product of \mathcal{A}_* with itself. Then we have a canonical map from $\mathcal{A} \otimes \mathcal{A}$ into $(\mathcal{A}_* \otimes_w \mathcal{A}_*)^*$ which has closed range if \mathcal{A} has the bounded approximation property. For more details, see [18]. Let I be the closed ideal of $\mathcal{A} \otimes \mathcal{A}$ generated by elements of the form $\alpha.(a \otimes b) - (a \otimes b).\alpha$, for $a, b \in \mathcal{A}$ and $\alpha \in \mathcal{U}$. $\mathcal{A} \otimes_{\mathcal{U}} \mathcal{A}$ is defined to be the quitiont Banach space $\frac{\mathcal{A} \otimes \mathcal{A}}{I}$ [15]. Let J be the closed ideal of \mathcal{A} generated by elements of the form $(\alpha.a).b - a.(b.\alpha)$. Since J is weak*-closed, then the quotient algebra $\frac{\mathcal{A}}{J}$ is again dual with predual

 ${}^{\perp}J = \{\phi \in \mathcal{A}_* : \langle \phi, a \rangle = 0 \text{ for all } a \in J \}. \text{ Moreover, } \mathcal{A} \hat{\otimes}_{\mathcal{U}} \mathcal{A} \cong \frac{\mathcal{A} \otimes \mathcal{A}}{I} \\ \text{and } \frac{\mathcal{A}}{J} \text{ could be regarded as a Banach } \mathcal{A}\text{-}\mathcal{U}\text{-module. Let } \mathcal{L}^2_{w^*}(\frac{\mathcal{A}}{J}, \mathbb{C}) \\ \text{denote the separately } w_{k^*}\text{-continuous 2-linear maps from } \frac{\mathcal{A}}{J} \times \frac{\mathcal{A}}{J} \text{ to } \mathbb{C}. \\ \text{Note that the dual Banach } \mathcal{A}\text{-}\mathcal{U}\text{-module } \mathcal{L}^2_{w^*}(\frac{\mathcal{A}}{J}, \mathbb{C}) \text{ need not be normal.} \\ \text{Let } \tilde{w} : \mathcal{A} \hat{\otimes}_{\mathcal{U}} \mathcal{A} \to \frac{\mathcal{A}}{J} \text{ be the multiplication operator, } \tilde{w}(a \otimes b + I) = \\ ab + J. \text{ Since the quotient map is continuous and open, then it is immediate that } \tilde{w}^* \text{ maps } ^{\perp}J \text{ into } \mathcal{L}^2_{w^*}(\frac{\mathcal{A}}{J}, \mathbb{C}). \\ \text{It follows that } \tilde{w}^{**} \text{ drops to an } \mathcal{A}\text{-}\mathcal{U}\text{-module homomorphism } \tilde{w}^{**} : \mathcal{L}^2_{w^*}(\frac{\mathcal{A}}{J}, \mathbb{C})^* \to \frac{\mathcal{A}}{J}. \\ \text{Recall a few definitions from } [10](\text{with a different notation, however}). \\ \text{Given } F \in \mathcal{L}^2_{w^*}(\frac{\mathcal{A}}{J}, \mathbb{C}) \text{ and } M \in \mathcal{L}^2_{w^*}(\frac{\mathcal{A}}{J}, \mathbb{C})^*, \\ \text{we put } \mathcal{L} = \mathcal{L}^2_{w^*}(\mathcal{A}, \mathbb{C}) = \mathcal{L}^2_{w^*}(\mathcal{A}, \mathbb{C})^*. \\ \text{Moreover } \mathcal{L} = \mathcal{L}^2_{w^*}(\mathcal{A}, \mathbb{C}) \text{ and } \mathcal{L} = \mathcal{L}^2_{w^*}(\mathcal{A}, \mathbb{C})^*. \\ \text{Moreover } \mathcal{L} = \mathcal{L}^2_{w^*}(\mathcal{A}, \mathbb{C}) = \mathcal{L}^2_{w^*}(\mathcal{A}, \mathbb{C})^*. \\ \text{Moreover } \mathcal{L} = \mathcal{L}^2_{w^*}(\mathcal{L}, \mathbb{C})^*. \\ \text{Moreover } \mathcal{L}$

$$\langle M, F \rangle = \int F dM =: \int_{\mathcal{A} \hat{\otimes}_{\mathcal{U}} \mathcal{A}} F(a+J,b+J) dM(a+J,b+J).$$

More generally, let E be a dual Banach space and let $F: \frac{\mathcal{A}}{J} \times \frac{\mathcal{A}}{J} \to E$ be a bilinear map such that $a + J \to F(a + J, b + J)$ and $b + J \to F(a + J, b + J)$ are w_{k^*} - continuous. We define $\int F dM \in E$ by

$$\langle \int F dM, x \rangle = \int \langle F(a+J,b+J), x \rangle dM(a+J,b+J)$$

where $a, b \in \mathcal{A}, x \in E_*$. Let $\varphi \in \mathcal{HOM}_{w_{k^*}}(\mathcal{A})$ such that $\varphi(J) \subseteq J$. Then the map $\tilde{\varphi} : \frac{\mathcal{A}}{J} \to \frac{\mathcal{A}}{J}$ by $\tilde{\varphi}(a+J) = \varphi(a) + J$ could be considered as an element of $\mathcal{HOM}_{w_{k^*}}(\frac{\mathcal{A}}{J})$.

Definition 2.7. Let \mathcal{A} be a dual Banach algebra. An element $M \in \mathcal{L}^2_{w^*}(\frac{\mathcal{A}}{J}, \mathbb{C})^*$ is called a φ -module normal virtual diagonal for \mathcal{A} if $\tilde{w}^{**}(M)$ is an identity for $\frac{\varphi(\mathcal{A})}{J}$ and $M. \ \tilde{\varphi}(c+J) = \tilde{\varphi}(c+J). \ M \ (c \in \mathcal{A}).$

Note that with the above notation M. (c + J) = (c + J). M is equivalent to

$$\int F(ca+J,b+J)dM(a+J,b+J) = \int F(a+J,bc+J)dM(a+J,b+J)$$

Theorem 2.8. Let \mathcal{A} and \mathcal{U} be dual Banach algebras, let \mathcal{A} be a unital dual Banach \mathcal{U} - module and let \mathcal{A} has an id-module normal virtual diagonal. Then \mathcal{A} is id-Connes module amenable.

Proof. Let E be a commutative normal Banach \mathcal{A} - \mathcal{U} -module. We first note that \mathcal{A} has an identity. From Theorem 5, it is therefore sufficient for \mathcal{A} to be *id*-Connes module amenable that we suppose that E is unital. Let $D : \mathcal{A} \to E$ be a module derivation that is w_{k^*} - continuous. It is straightforward to see that E is a normal Banach $\frac{\mathcal{A}}{J}$ - \mathcal{U} -module. Let $E = (E_*)^*$. Since E is commutative, then D = 0 on J. Thus we have $\tilde{D} : \frac{\mathcal{A}}{J} \to E$, $\tilde{D}(a+J) := D(a)$ $(a \in \mathcal{A})$. To each $x \in E_*$, there corresponds $V_x : \frac{\mathcal{A}}{J} \times \frac{\mathcal{A}}{J} \to \mathbb{C}$ via $V_x(a+J,b+J) = \langle x, (a+J)\tilde{D}(b+J)\rangle(a,b\in\mathcal{A})$. It is routinely checked that $V_x \in \mathcal{L}^2_{w^*}(\frac{\mathcal{A}}{J},\mathbb{C})$. For each $a, b \in \mathcal{A}$ and $a_* \in \mathcal{A}_*$ we have

$$\begin{split} \langle \int ab + JdM, a_* + J^{\perp} \rangle &= \langle \int \tilde{w}(a \otimes b + I)dM, a_* + J^{\perp} \rangle \\ &= \int \langle \tilde{w}(a \otimes b + I), a_* + J^{\perp} \rangle dM \\ &= \int \langle a \otimes b + I, \tilde{w}^*(a_* + J^{\perp}) \rangle dM \\ &= \langle \int a \otimes b + IdM, \tilde{w}^*(a_* + J^{\perp}) \rangle \\ &= \langle M, \tilde{w}^*(a_* + J^{\perp}) \rangle = \langle \tilde{w}^{**}(M), a_* + J^{\perp} \rangle, \end{split}$$

Now, put $f(x) = \langle M, v_x \rangle (x \in E_*)$. Let $c \in \mathcal{A}$. We have

$$\langle (c+J). f - f. (c+J), x \rangle = \langle f, x. (c+J) - (c+J). x \rangle = \langle M, V_{x. (c+J)-(c+J). x} \rangle = \int V_{x. (c+J)-(c+J). x} (a+J, b+J) dM = \int \langle x. (c+J) - (c+J). x, (a+J) \tilde{D}(b+J) \rangle dM = \int \langle x, (c+J)(a+J) \tilde{D}(b+J) - (a+J) \tilde{D}(b+J)(c+J) \rangle dM = \int \langle x, (ca+J) \tilde{D}(b+J) - (a+J) \tilde{D}(b+J)(c+J) \rangle dM,$$

and so

$$\langle (c+J), f - f, (c+J), x \rangle$$

$$= \int \langle x, (a+J)\tilde{D}(bc+J) - (a+J)\tilde{D}(b+J)(c+J) \rangle dM$$

$$= \int \langle x, (a+J)\tilde{D}(b+J)(c+J) + (a+J)(b+J)\tilde{D}(c+J) \rangle dM$$

$$= \int \langle (a+J)(b+J)\tilde{D}(c+J), x \rangle dM$$

$$= \int \langle (ab+J)\tilde{D}(c+J), x \rangle dM$$

$$= \int \langle (ab+J), x \rangle dM. \tilde{D}(c+J)$$

$$= \langle \tilde{w}^{**}(M), \tilde{D}(c+J), x \rangle.$$

All in all, D(c) = c. f - f. c holds.

Let \mathcal{A} be a commutative Banach \mathcal{U} -bimodule. Consider $\mathcal{A} \hat{\otimes}_{\mathcal{U}} \mathcal{A}$ with the product specified by $(a \otimes b)(c \otimes d) = ac \otimes bd$. Let $\varphi \otimes \varphi$ denote the element of $\mathcal{HOM}_{w_{k^*}}(\mathcal{A} \hat{\otimes} \mathcal{A})$ satisfying $\varphi \otimes \varphi(a \otimes b) = \varphi(a) \otimes \varphi(b)$ for all $a, b \in \mathcal{A}$. $\varphi \otimes \varphi$ induces a map $\varphi \otimes_{\mathcal{U}} \varphi \in \mathcal{HOM}_{w_{k^*}}(\mathcal{A} \hat{\otimes}_{\mathcal{U}} \mathcal{A})$ with $\varphi \otimes_{\mathcal{U}} \varphi(a \otimes b) = \varphi(a) \otimes \varphi(b) + I$ [7].

Theorem 2.9. Let \mathcal{A} and \mathcal{U} be dual Banach algebras, let \mathcal{A} be a unital dual Banach \mathcal{U} - module and let $\mathcal{A} \hat{\otimes}_{\mathcal{U}} \mathcal{A}$ be a dual Banach algebra and $\varphi \in \mathcal{HOM}_{w_{k^*}}(\mathcal{A})$. If \mathcal{A} is φ -Connes module amenable, then $\mathcal{A} \hat{\otimes}_{\mathcal{U}} \mathcal{A}$ is $\varphi \otimes_{\mathcal{U}} \varphi$ -Connes module amenable.

Proof. Let E be a commutative normal Banach $\mathcal{A} \hat{\otimes}_{\mathcal{U}} \mathcal{A}$ - \mathcal{U} -module and $\hat{D} : \mathcal{A} \hat{\otimes}_{\mathcal{U}} \mathcal{A} \to E$ be a module $\varphi \otimes_{\mathcal{U}} \varphi$ -derivation that is w_{k^*} - continuous. Consider the quotient map $\pi : \mathcal{A} \hat{\otimes} \mathcal{A} \to \mathcal{A} \hat{\otimes}_{\mathcal{U}} \mathcal{A}$. Define

$$(a \otimes b). \ x = \pi(a \otimes b) \ominus x, \ x. \ (a \otimes b) = x \ominus \pi(a \otimes b) \ (a, b \in \mathcal{A}, x \in E)$$

Since π is w_{k^*} - continuous, then E is a normal Banach $\mathcal{A} \otimes \mathcal{A}$ - \mathcal{U} -module. Put $\hat{D} \circ \pi : \mathcal{A} \otimes \mathcal{A} \to E$. It is easy to see that $\hat{D} \circ \pi$ is a module $\varphi \otimes \varphi$ derivation that is w_{k^*} - continuous. If $\hat{D} \circ \pi$ is inner, then \hat{D} is inner. Therefore in the following we prove that $D = \hat{D} \circ \pi$ is inner. For with $e_{\mathcal{A}}$ an identity for \mathcal{A} we define

$$a \vartriangle x = (a \otimes e_{\mathcal{A}}). x, x \vartriangle a = x. (a \otimes e_{\mathcal{A}}) (a \in \mathcal{A}, x \in E).$$

For $a \in \mathcal{A}$, $x \in E$ and $\alpha \in \mathcal{U}$, we get

$$a \bigtriangleup (\alpha, x) - (a, \alpha) \bigtriangleup x = (a \otimes e_{\mathcal{A}}). (\alpha, x) - (a, \alpha \otimes e_{\mathcal{A}}). x$$
$$= (a \otimes e_{\mathcal{A}}). (\alpha, x) - (\alpha, a \otimes e_{\mathcal{A}}). x$$
$$= (a \otimes e_{\mathcal{A}}). (\alpha, x) - (\alpha, (a \otimes e_{\mathcal{A}})). x$$
$$= (a \otimes e_{\mathcal{A}}). (\alpha, x) - ((a \otimes e_{\mathcal{A}}). \alpha). x$$
$$= (a \otimes e_{\mathcal{A}}). (\alpha, x) - (a \otimes e_{\mathcal{A}}). (\alpha, x) = 0$$

and the same for the right or two-sided actions. So E is a commutative normal Banach \mathcal{A} - \mathcal{U} -bimodule. Put $D_{\mathcal{A}} : \mathcal{A} \to E, D_{\mathcal{A}}(a) = D(a \otimes e_{\mathcal{A}}),$ then

$$D_{\mathcal{A}}(ab) = D(ab \otimes e_{\mathcal{A}})$$

= $D(a \otimes e_{\mathcal{A}}). \varphi \otimes \varphi(b \otimes e_{\mathcal{A}}) + \varphi \otimes \varphi(a \otimes e_{\mathcal{A}}). D(b \otimes e_{\mathcal{A}})$
= $D_{\mathcal{A}}(a) \bigtriangleup \varphi(b) + \varphi(a) \bigtriangleup D_{\mathcal{A}}(b).$

Since \mathcal{A} is φ -Connes module amenable, there is $u \in E$ such that $D_{\mathcal{A}} = ad_u$. Therefore, $\tilde{D} = D - ad_u$ vanishes on $\mathcal{A} \otimes e_{\mathcal{A}}$. Setting

$$a \nabla x = (e_{\mathcal{A}} \otimes a). x, x \nabla a = x. (e_{\mathcal{A}} \otimes a) (a \in \mathcal{A}, x \in E)$$

makes E into an \mathcal{A} - \mathcal{U} -bimodule. Let us now, $D'_{\mathcal{A}}(a) = \tilde{D}(e_{\mathcal{A}} \otimes a)(a \in \mathcal{A})$. Set $K = \{e \in E_* : \langle \tilde{D}(e_{\mathcal{A}} \otimes a), e \rangle = 0\}$. Since \tilde{D} is w_{k^*} continuous, by a similar argument of [17, Theorem 4.9] we have $(\frac{E_*}{K})^* = \overline{\tilde{D}(e_{\mathcal{A}} \otimes a)}^{w_k^*}$. Further, $\overline{\tilde{D}(e_{\mathcal{A}} \otimes a)}^{w_k^*}$ is a w_{k^*} -closed submodule of E. All in all $\overline{\tilde{D}(e_{\mathcal{A}} \otimes a)}^{w_k^*}$ is a commutative normal Banach \mathcal{A} - \mathcal{U} -module. Then there is $v \in \overline{\tilde{D}(e_{\mathcal{A}} \otimes a)}^{w_k^*}$ such that $\tilde{D}(e_{\mathcal{A}} \otimes a) = D'_{\mathcal{A}}(a) = \varphi(a) \nabla \nu - \nu \nabla \varphi(a) = \varphi \otimes \varphi(e_{\mathcal{A}} \otimes a)$. v - v. $\varphi \otimes \varphi(e_{\mathcal{A}} \otimes a)$

and $\tilde{D} - ad_v|_{(e_A \otimes A)} = \{0\}$. Consequently $\tilde{D} - ad_v = D - ad_u - ad_v$ vanishes on $\mathcal{A} \otimes \mathcal{A}$. This complete the proof.

3. χ -Connes Module Amenability of semigroup algebras

A discrete semigroup S is called an inverse semigroup if for each $x \in S$ there is a unique element $x^* \in S$ such that $xx^*x = x$ and $x^*xx^* = x^*$. An element $e \in S$ is called an idempotent if $e = e^* = e^2$. The set of idempotent elements of S is denoted by E. For $s \in S$, we define $L_s, R_s : S \to S$ by $L_s(t) = st, R_s(t) = ts$, $(t \in S)$. If for each $s \in S$, L_s and R_s are finite-to-one maps, then we say that S is weakly cancellative.

Before turning our result, we note that if S is a weakly cancellative semigroup, then $l^1(S)$ is a dual Banach algebra with predual $c_0(S)[8]$.

In Theorem 2.8 it is shown that if a unital Banach algebra \mathcal{A} has an *id*-module normal virtual diagonal, then \mathcal{A} is *id*-Connes module amenable. It would be interesting to know that the converse holds for inverse semigroup algebra $l^1(S)$.

For an inverse semigroup S, we consider an equivalence relation on Swhere $s \sim t$ if and only if there is $e \in E$ such that se = te. The quotient semigroup $S_G = \frac{S}{\sim}$ is a group [13]. It is easy to see that E is a commutative subsemigroup of S. Therefore, $l^1(S)$ is a Banach $l^1(E)$ module with compatible canonical actions. Let $l^1(E)$ acts on $l^1(S)$ by the multiplication from right and trivially from left, that is

$$\delta_e \delta_s = \delta_s, \ \delta_s \delta_e = \delta_{se} = \delta_s * \delta_e \ (s \in S, e \in E).$$

With above notation, $l^1(S_G)$ is a quotient of $l^1(S)$ and so the above action of $l^1(E)$ on $l^1(S)$ lifts to an action of $l^1(E)$ on $l^1(S_G)$, making it a Banach $l^1(E)$ -module [1].

Theorem 3.1. Let S be a weakly cancellative semigroup. Let S be an inverse semigroup with idempotents E, let $l^1(S)$ be a Banach $l^1(E)$ -module and let $\chi \in \mathcal{HOM}_{w_{k^*}}(l^1(S))$. If $l^1(S)$ is χ -Connes module amenable, then $l^1(S)$ has a χ -module normal virtual diagonal.

Proof. Let $\pi : S \to S_G$ be the quotient map. By [1, Lemma 3.2], we define a bimodule action of $l^1(S)$ on $l^{\infty}(S_G)$ by

$$\delta_s. \ x = \delta_{\pi(s)} * x, \ x. \ \delta_s = x * \delta_{\pi(s)} \ (s \in S, \ x \in l^{\infty}(S_G)).$$

Since $c_0(S_G)$ is an introverted subspace of $l^{\infty}(S_G)$ [9], then $l^{\infty}(S_G)^*$ is a normal Banach $l^1(S)$ - $l^1(E)$ -module. Choose $n \in l^{\infty}(S_G)^*$ with $\langle n, 1 \rangle = 1$, and define $D : l^1(S) \to l^{\infty}(S_G)^*$ by $D(\delta_s) = \chi(\delta_s)$. n - n. $\chi(\delta_s)$. Moreover, D attains its values in the weak*-closed submodule $(\frac{l^{\infty}(S_G)}{\mathbb{C}})^*$. Since $l^1(S)$ is χ -Connes module amenable, then D is inner. Consequently, there exists $\tilde{n} \in (\frac{l^{\infty}(S_G)}{\mathbb{C}})^*$ such that $D(\delta_s) = ad_{\tilde{n}}$, so

$$\tilde{\chi}(\delta_{\pi(s)}). n - n. \tilde{\chi}(\delta_{\pi(s)}) = \tilde{\chi}(\delta_{\pi(s)}). \tilde{n} - \tilde{n}. \tilde{\chi}(\delta_{\pi(s)}).$$

For each $f \in l^{\infty}(S_G)$,

 $\langle \tilde{\chi}(\delta_{\pi(s)}). (n-\tilde{n}) - (n-\tilde{n}). \tilde{\chi}(\delta_{\pi(s)}), f \rangle = 0.$

Now put $m := n - \tilde{n} \in l^{\infty}(S_G)^*$, we have

$$\langle \tilde{\chi}(\delta_{\pi(s)}). m - m. \tilde{\chi}(\delta_{\pi(s)}), f \rangle = 0.$$

By a similar argument as in [18, Lemma 7.1.1], there exists a net $\{f_{\alpha}\}$ of $l^1(S_G)$ such that $\int f_{\alpha} = 1$ and $\| \tilde{\chi}(\delta_{\pi(s)}) * f_{\alpha} - f_{\alpha} * \tilde{\chi}(\delta_{\pi(s)}) \| \to 0$.

Now let $f \in c_0(S_G \times S_G)$. Take $\epsilon > 0$ and consider a compact set K such that $||f(x)||_{S_G \setminus K} < \sqrt{\epsilon}$ and

$$\sup_{s \in K} \| \tilde{\chi}(\delta_{\pi(s)}) * f_{\alpha} - f_{\alpha} * \tilde{\chi}(\delta_{\pi(s)}) \| < \frac{\sqrt{\epsilon}}{\|f\|}$$

Since the quotient map is continuous and open, then by [20, Proposition 3.1] we have $\mathcal{L}^2_{w_{k^*}}(l^1(S_G), \mathbb{C}) = c_0(S_G \times S_G)$. Then we may define

$$\langle M, f \rangle = \lim_{\alpha} \int f(\tilde{\chi}(\delta_{\pi(x^*)}), \tilde{\chi}(\delta_{\pi(x)})) f_{\alpha}(x) dx.$$

By the above argument, for each $s \in S$ there exists α_0 such that for each $\alpha > \alpha_0$, $\| \tilde{\chi}(\delta_{\pi(s)}) * f_{\alpha} - f_{\alpha} * \tilde{\chi}(\delta_{\pi(s)}) \| < \frac{\sqrt{\epsilon}}{2}$. Hence

$$\begin{split} &\langle \quad \tilde{\chi}(\delta_{\pi(s)}). \ M - M. \ \tilde{\chi}(\delta_{\pi(s)}), \ f \rangle = \langle M, \ f. \ \tilde{\chi}(\delta_{\pi(s)}) - \ \tilde{\chi}(\delta_{\pi(s)}). \ f \rangle \\ &= \lim_{\alpha} \int \left(f(\tilde{\chi}(\delta_{\pi(s)\pi(x^*)}), \tilde{\chi}(\delta_{\pi(x)})) - f(\tilde{\chi}(\delta_{\pi(x^*)}), \tilde{\chi}(\delta_{\pi(xs)})) \right) f_{\alpha}(x) dx \\ &\leq \| f \|_{S_G \setminus K} \| \tilde{\chi}(\delta_{\pi(s)}) * f_{\alpha} - f_{\alpha} * \tilde{\chi}(\delta_{\pi(s)}) \| \\ &+ \| f \|_K \| \tilde{\chi}(\delta_{\pi(s)}) * f_{\alpha} - f_{\alpha} * \tilde{\chi}(\delta_{\pi(s)}) \| < \epsilon. \end{split}$$

Also for each s

$$\begin{split} \tilde{w}^{**}(M).\tilde{\chi}(\delta_{\pi(s)}) &= \langle M, \tilde{w}^{*}(\tilde{\chi}(\delta_{\pi(s)})) \rangle \\ &= \lim_{\alpha} \int (\tilde{w}^{*}(\tilde{\chi}(\delta_{\pi(s)})))(\tilde{\chi}(\delta_{\pi(x^{*})}), \tilde{\chi}(\delta_{\pi(x)}))f_{\alpha}(x)dx \\ &= \lim_{\alpha} \int \tilde{\chi}(\delta_{\pi(s)})\tilde{\chi}(\delta_{\pi(x^{*})})\tilde{\chi}(\delta_{\pi(x)})f_{\alpha}(x)dx \\ &= \lim_{\alpha} \int \tilde{\chi}(\delta_{\pi(s)}\delta_{\pi(x^{*})}\delta_{\pi(x)})f_{\alpha}(x)dx \\ &= \lim_{\alpha} \tilde{\chi}(\delta_{\pi(s)}) \int f_{\alpha}(x)dx = \tilde{\chi}(\delta_{\pi(s)}). \end{split}$$

Consequently, M is a χ -normal module virtual diagonal for $l^1(S)$. \Box

Corollary 3.2. Let S be a weakly cancellative semigroup, let S be an inverse semigroup with idempotents E and let $l^1(S)$ be a Banach $l^1(E)$ -module. Then the following are equivalent:

(i) $l^1(S)$ is Connes module amenable.

(ii) $l^1(S)$ has a module normal virtual diagonal.

Proof. This follows immediately from Theorem 2.8 and Theorem 3.1. \Box

Example 10. Let (\mathbb{N}, \vee) be the semigroup of positive integers with maximum operation. Since \mathbb{N} is weakly cancellative, then $l^1(\mathbb{N})$ is a dual Banach algebra with predual $c_0(\mathbb{N})$. By [8, Theorem 5.13], $l^1(\mathbb{N})$

is not Connes amenable. Moreover $l^1(\mathbb{N})$ is module amenable on $l^1(E_{\mathbb{N}})$, so it is Connes module amenable (see [2]).

Acknowledgments

The authors would like to thank the referee for his/her careful reading of the paper and for many valuable suggestions.

References

- M. Amini, Module amenability for semigroup algebras, Semigroup Forum, 69 (2004), 243–254.
- M. Amini, A. Bodaghi, D. Bagha and D. Ebrahimi, Module amenability of the second dual and module topological center of semigroup algebras, *Semigroup Forum*, 80 (2010), 302–312.
- M. Amini and R. Rezavand, Module operator amenability of the Fourier algebra of an inverse semigroup, *Semigroup Forum*, 92 (2014), 45–70.
- M. Amini and R. Rezavand, Module operator virtual diagonals on the Fourier algebra of an inverse semigroup, *Semigroup Forum*, 97 (2018), 562–570.
- M. Lashkarizadeh Bami, M. Valaei and M. Amini, Super module amenability of inverse semigroup algebras, *Semigroup Forum*, 86 (2013), 279–283.
- H. G. Dales, A. T. Lau and D. Strauss, Banach algebras on semigroups and their compactifications, *Mem. Amer. Math. Soc.*, **205** (2010), 1–165.
- H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monogr. ser., Clarendon Press (2000)
- M. Daws, Connes amenability of bidual and weighted semigroup algebras, *Math. Scand.*, 99 (2006), 217–246.
- 9. M. M. Day, Amenable Semigroups, Illinois J. Math., 1 (1957), 509-544.
- E. G. Effros, Amenability and virtual diagonals for Von Neumann algebras, J. Funct. Anal., 78 (1988), 137–156.
- A. Ghaffari and S. Javadi, φ-Connes amenability of dual Banach algebras, Bull. Iranian Math. Soc., 43 (2017), 25–39.
- B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).
- 13. W. D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, *Proc. Glasgow Math. Assoc.*, **5** (1961), 41–48.
- T. W. Palmer, Arens multiplication and a characterization of W^{*}-algebras, Proc. Amer. Math. Soc. 44 (1974), 81–87.
- M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Func. Analysis, 1 (1967), 443–491.
- R. Rezavand, M. Amini, M. H. Sattari and D. Ebrahimi Bagha, Module Arens regularity for semigroup algebras, *Semigroup Forum*, 77 (2008), 300–305.
- 17. W. Rudin, Functional Analysis, McGraw Hill, New York, 1991.
- V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer Verlag, 2002.
- V. Runde, Amenability for dual Banach algebras, Studia Math., 148 (2001), 47–66.

- 20. V. Runde, Connes amenability and normal virtual diagonals for measure algebras I, J. London Math. Soc., 67 (2003), 643–656.
- V. Runde, Connes amenability and normal virtual diagonals for measure algebras II, Bull. Austral. Math. Soc., 68 (2003), 325–328.

Ali Ghaffari

Department of Mathematics, University of Semnan, P.O. Box 35195-363, Semnan, Iran.

Email: aghaffari@semnan.ac.ir

Samaneh Javadi

Faculty of Engineering- East Guilan, University of Guilan, P.O. Box 44891-63157, Rudsar, Iran.

Email: s.javadi62@gmail.com

Ebrahim Tamimi

Department of Mathematics, University of Semnan, P.O. Box 35195-363, Semnan, Iran.

Email: tamimi-ebrahim@yahoo.com

Journal of Algebraic Systems

φ -CONNES MODULE AMENABILITY OF DUAL BANACH ALGEBRAS

A. GHAFFARI, S. JAVADI AND E. TAMIMI

♀-کنز میانگینپذیری مدولی از جبرهای باناخ دوگان علی غفاری^۱، سمانه جوادی^۲ و ابراهیم تمیمی^۱ ^۱گروه ریاضی محض، دانشکده علوم ریاضی، دانشگاه سمنان، سمنان، ایران ۲ دانشکده مهندسی گیلان-شرق، دانشگاه گیلان، رودسر، ایران

در این مقاله φ -کنز میانگین پذیری مدولی از جبرهای باناخ دوگان A را تعریف میکنیم که در آن φ یک همریختی مدولی کراندار از A به A بوده که ضعیف ستاره پیوسته است. بررسی φ مدول نرمال و قطرهای واقعی از اهداف این مقاله است. فرض کنید S یک نیمگروه معکوس و حذفی ضعیف بوده و E زیر نیمگروه از خودتوان های S باشد. اگر χ یک همریختی مدولی کراندار و ضعیف ستاره پیوسته او E زیر نیمگروه از خودتوان های S باشد. اگر χ یک همریختی مدولی کراندار و ضعیف ستاره وسته است. بررسی φ مدول نرمال و قطرهای واقعی از اهداف این مقاله است. فرض کنید S یک نیمگروه معکوس و حذفی ضعیف بوده از E زیر نیمگروه از خودتوان های S باشد. اگر χ یک همریختی مدولی کراندار و ضعیف ستاره پیوسته و از واز و زیر نیمگرو از $\chi l^{1}(S)^{1}(S)^{1}(S)^{1}(S)$

کلمات کلیدی: جبرهای باناخ، میانگینپذیری مدولی، اشتقاق و جبر نیمگروهی.