

9th International Conference on Combinatorics, Cryptography, Computer Science and Computation December: 25-26, 2024

On some properties of self-similar action of a group on a k-graph

Ebrahim Tamimi¹ Velayat University, Iranshahr, Iran

Abstract

In this paper, we study the basic properties of the notion of a self-similar action of a group G on a k-graph. Also, by considering a self-similar k-graph over a certain group, we prove some hereditary properties through of so called restriction mapping on k-graph.

Keywords: Self-similar action, k-graph, G-hereditary, G-strongly connected, restriction map

AMS Mathematical Subject Classification [2010]: 46L05

1 Introduction

Let G be a discrete (countable) group, and (E, r, s) be a finite directed graph with no sources. In [3], Exel-Pardo introduced a notion of a selfsimilar action of G on E, which naturally generalizes the notion of selfsimilar groups (see, e.g., [5]). For investigate and to study a certain C^* -algebra, Exel-Pardo in [3] associated the self-similar action (G, E) an inverse semigroup $S_{G,E}$.

In this paper, we study the properties of the notion of a self-similar action of a group G on a k-graph. We know that for higher-dimensional cases, in general the construction of the inverse semigroup $S_{G,E}$ in [3] mentioned above does not apply, and so unlike [3] one can not apply the machinery in [1, 2].

2 Main results

Definition 2.1. Let Λ be a k-graph, and G be a group acting on Λ . Then the action is said to be self-similar if there exists a restriction map $G \times \Lambda \to G$, $(g, \mu) \mapsto g \mid_{\mu}$, such that

- (i) $g.(\mu\nu) = (g.\mu)(g \mid_{\mu} .\nu)$ for all $g \in G, \mu, \nu \in \Lambda$ with $s(\mu) = r(\nu)$.
- (ii) $g \mid_{\nu} = g$ for all $g \in G, \nu \in \Lambda^0$;
- (iii) $g \mid_{\mu\nu} = g \mid_{\mu} \mid_{\nu}$ for all $g \in G, \mu, \nu \in \Lambda$ with $s(\mu) = r(\nu)$;
- (iv) $1_G \mid_{\mu} = 1_G$ for all $\mu \in \Lambda$;
- (v) $(gh) \mid_{\mu} = g \mid_{h.\mu} h \mid_{\mu}$ for all $g, h \in G, \mu \in \Lambda$.

Moreover, Λ and G are called a self-similar k-graph over G and self-similar group on Λ , respectively [4].

 $^{^{1}}$ speaker

Definition 2.2. Let Λ be a self-similar k-graph over a group G, and H be a subset of Λ^0 . Then H is said to be G-hereditary if $s(H\Lambda) \subseteq H$ and $G.H \subseteq H$. Notice that H is hereditary in the usual sense, and that it naturally induces a self-similar action of G on $H\Lambda$ [4].

Definition 2.3. Let Λ be a self-similar k-graph over a group G. Then Λ is said to be G-strongly connected if $(G.\nu)\Lambda\omega \neq \emptyset$ for all $\nu, \omega \in \Lambda^0$.

Clearly, if Λ is strongly connected, then it is *G*-strongly connected [4].

Theorem 2.4. Let Λ be a self-similar k-graph over a group G. Then (i) $(g + g') \mid_{\mu} .s(\nu) = (g + g').s(\nu)$ for all $g, g' \in G, \ \mu, \nu \in \Lambda$ with $s(\mu) = r(\nu)$; (ii) $(g + g') \mid_{\mu} .s(\mu) = (g + g').s(\mu)$ for all $\mu \in \Lambda$; (iii) $((g + g') \mid_{\mu})^{-1} = (g + g')^{-1} \mid_{(g + g').\mu}$ for all $g, g' \in G, \mu \in \Lambda$.

Proof. (i) By hypothesis we have

$$(g + g').s(\nu) = (g + g').s(\mu\nu)$$

= $s((g + g').(\mu\nu))$
= $s((g + g') |_{\mu}.\nu)$
= $(g + g') |_{\mu}.s(\nu).$

(ii) This is a special case of (i).

(iii) We obtain

$$\begin{aligned} ((g+g')|_{\mu})((g+g')^{-1}|_{(g+g').\mu}) &= ((g+g')(g+g')^{-1})|_{(g+g').\mu} \\ &= 1_G = ((g+g')^{-1}(g+g'))|_{\mu} \\ &= ((g+g')^{-1}|_{(g+g').\mu})((g+g')|_{\mu}). \end{aligned}$$

г	1
	L
_	1

Let Λ be a k-graph. Set $\Lambda^e := \Lambda^{e_1} \cup \Lambda^{e_2} \cup \cdots \cup \Lambda^{e_k}$. By the next theorem we extend an action of G on $\Lambda^0 \bigcup \Lambda^e$ with a restriction to a self-similar action of G on Λ .

Theorem 2.5. Let Λ be a k-graph, and G be a group. Suppose that G acts on the set $\Lambda^0 \bigcup \Lambda^e$, and that there is a restriction map $G \times (\Lambda^0 \bigcup \Lambda^e) \to G$, $(g, x) \mapsto g \mid_x$, satisfying the following properties:

 $\begin{array}{l} (i) \ G.\Lambda^{n} \subseteq \Lambda^{n} \ for \ all \ n \in \{0, e_{i} : 1 \leq i \leq k\}; \\ (ii) \ s((g+g').\mu) = (g+g').s(\mu) \ and \ r((g+g').\mu) = (g+g').r(\mu) \ for \ all \ g, g' \in G, \mu \in \Lambda^{e}; \\ (iii) \ (g+g')|_{\mu} \ .s(\nu) = (g+g').s(\nu) \ for \ all \ g, g' \in G, \mu \in \Lambda^{e}, \nu \in \Lambda \ with \ s(\mu) = r(\nu); \\ (iv) \ ((g+g').\mu)((g+g')|_{\mu} \ .\nu) = ((g+g').\alpha)((g+g')|_{\alpha} \ .\beta) \ for \ all \ g, g' \in G, \mu, \nu, \alpha, \beta \in \Lambda^{e} \ with \ \mu = \alpha\beta; \\ (v) \ (g+g')|_{\nu} = (g+g') \ for \ all \ g, g' \in G, \ \nu \in \Lambda^{0}; \\ (vi) \ (g+g')|_{\mu} \ |_{\nu} = (g+g')|_{\alpha}|_{\beta} \ for \ all \ g, g' \in G, \ \mu, \nu, \alpha, \beta \in \Lambda^{e} \ with \ \mu\nu = \alpha\beta; \\ (vi) \ ((g+g')h)|_{\mu} = ((g+g'))|_{\alpha}|_{\beta} \ for \ all \ g, g' \in G, \ \mu, \nu, \alpha, \beta \in \Lambda^{e} \ with \ \mu\nu = \alpha\beta; \\ \end{array}$

Then there exists a unique self-similar action of G on Λ with the restriction map | from $G \times \Lambda$ into G extending the given action and the given map |.

Proof. Let $\mu \in \Lambda$ with $|\mu| = 2$. We set $\mu = \mu_1 \mu_2$ with $\mu_1, \mu_2 \in \Lambda^e$. For $g, g' \in G$, set

$$(g+g').\mu := ((g+g').\mu_1)((g+g')|_{\mu_1}.\mu_2)$$

and

$$(g+g')|_{\mu} := (g+g')|_{\mu_1}|_{\mu_2}$$

We can see that both $(g + g') \cdot \mu$ and $(g + g') \mid_{\mu}$ are well-defined. Inductively, we extend the given action and restriction to Λ . One can see that they satisfy Definition 2.1 (i) - (v) are satisfied. Thus the extensions follows a self-similar action of G on Λ .

Remark 2.6. Let Λ be a self-similar k-graph over a group G. For $g, g' \in G$ and $x \in \Lambda^{\infty}$, we define

$$((g+g').x)(p,q) := (g+g')|_{x(0,p)} .x(p,q)$$
 for all $(p,q) \in \Omega_k$,

and

$$(g+g')\mid_x (p) := (g+g')\mid_{x(0,p)} \qquad for all \qquad p \in \mathbb{N}^k.$$

Then $(g+g').x \in \Lambda^{\infty}$ and $(g+g') \mid_x$ is a function from \mathbb{N}^k to G.

By the following proposition we give some basic properties of $(g + g') \cdot x$ and $(g + g') \mid_x$.

Proposition 2.7. Let Λ be a self-similar k-graph over a group G. The following statements are hold (i) for $g, g' \in G$, the map $\Lambda^{\infty} \to \Lambda^{\infty}$, $x \to (g + g').x$ is a homeomorphism; (ii) $\sigma^p((g + g').x) = (g + g')|_{x(0,p)} .\sigma^p(x)$ for all $g, g' \in G$, $p \in \mathbb{N}^k$ and $x \in \Lambda^{\infty}$; (iii) $(g + g').(\mu x) = ((g + g').\mu)((g + g')|_{\mu}.x)$ for all $g, g' \in G$, $\mu \in \Lambda$ and $x \in s(\mu)\Lambda^{\infty}$.

Proof. The proof of (i) is straightforward.

(ii) Suppose that $p \in \mathbb{N}^k$ and $(s,t) \in k$, repeatedly using Definition 2.1 (5) follows that

$$\begin{aligned} \sigma^{p}((g+g').x)(s,t) &= ((g+g').x)(s+p,t+p) \\ &= (g+g') \mid_{x(0,s+p)} .x(s+p,t+p) \\ &= (g+g') \mid_{x(0,s+p)} .\sigma^{p}(x)(s,t) \\ &= (g+g') \mid_{x(0,p)} |\sigma^{p}(x)(0,s).\sigma^{p}(x)(s,t) \\ &= ((g+g') \mid_{x(0,p)} .\sigma^{p}(x))(s,t). \end{aligned}$$

The proof of (iii) is straightforward.

Acknowledgment

The author express their deep thanks for the comments.

References

- R. Exel, Inverse semigroups and combinatorial C*-algebras, Bull. Braz. Math. Soc. (N.S.) 39 (2008), 191–313.
- [2] R. Exel and E. Pardo, The tight groupoid of an inverse semigroup, Semigroup Forum 92 (2016), 274–303.
- [3] R. Exel and E. Pardo, Self-similar graphs, a unified treatment of Katsura and Nekrashevych C*-algebras, Adv. Math. 306 (2017), 1046–1129.
- [4] H. Li and D. Yang, Self-similar k-graph C*-algebras, International Mathematics Research Notices. 15 (2021), 11270–11305.
- [5] V. Nekrashevych, Self-similar groups, American Mathematical Society, Providence, RI, 2005, xii+231.

e-mail: e.tamimi@velayat.ac.ir