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ABSTRACT. We investigate x-Connes module amenability for semi-
group algebras, where x is a module homomorphism on semigroup
algebra that is continuous with respect to w*-topology and S is
an inverse weakly cancellative semigroup. Also, we study the no-
tion of x-module normal, virtual diagonals in semigroup algebras.
Other hereditary properties in this direction are also obtained.

1. INTRODUCTION

In [1], Amini introduced the concept of module amenability for Ba-
nach algebras, and proved that when S is an inverse semigroup with
subsemigroup FE of idempotents, then [!(S) as a Banach module over
U = [}(E) is module amenable if and only if S is amenable. We may
refer the reader e.g. to [I, 1, 5], for more informations. In this pa-
per, we study the concept of x-Connes module amenability and give a
characterization of y-Connes module amenability in terms of y-modul
normal virtual diagonals.
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2. MAIN RESULTS

Let S be a semigroup. Then S is named cancellative semigroup, if
for every r,s #t € S we have rs # rt and sr # tr.

A discrete semigroup S is called an inverse semigroup if for each
x € S there is a unique element z* € S such that zz*r = z and
r*xr* = x*. An clement ¢ € S is called an idempotent if ¢ = ¢* = 2.
The set of idempotent elements of S is denoted by E. For s € S, we
define Ly, Ry : S — S by Lg(t) = st, Rs(t) = ts;(t € S). If for each
s €5, Ls and Ry are finite-to-one maps, then we say that S is weakly
cancellative. If S is a weakly cancellative semigroup, then [*(S) is a
dual Banach algebra with predual ¢o(S)[2].

Let A = (A.)* be a dual Banach algebra, and U be a Banach algebra
such that A is a Banach U-bimodule via,

a.(ab) = (a.a).b, (af).a = a.(B.a) (a,be A a,8€U).

Let I be the closed ideal of ARA generated by Elements of the form
a.(a®b) — (a®b).a, for a,b € Aand o € U. ARy.A is defined to be
the quitiont Banach space &;A.

Let J be the closed ideal of A generated by elements of the form
(a.a).b— a.(b.cr). In this paper we let that £2.(4,C) denote the sepa-
rately w*-continuous two-linear maps from § ><§ to C, o* : AQyA — é
be the multiplication operator with &(a®b+1) = ab+J and ¢ : 4 — 4

be the map that is defined by ¢(a + J) = p(a) + J, a € A.

Definition 2.1. Let A be a dual Banach algebra. A module homo-
morphism from A to A is a map ¢ : A — A with

o(a.a+b.8) = a.p(a)+e((b).8, ¢lab) = p(a)p(b) (a,be A a,p €U).

Definition 2.2. Let A be a dual Banach algebra and ¢ : A — A
be a bounded w*-continuous module homomorphism. An element M &
£2.(%,C)* is called a ¢-module normal virtual diagonal for A if &** (M)

is an identity for @ and M.p(c+ J) = @(c+ J) where ¢ € A.

Let X be a dual Banach A-bimodule. X is called normal if for each
r € X, the maps

A— X, a— a.x, a—x.0

are w*-continuous. If moreover X is a U-bimodule such that for a €
Aacel and z € X

a.(a.x) = (aa)z, (aa)r=a(az), (ez)a=a(x.a),
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then X is called a normal Banach left A-U/-module. Similarly for the
right and two sided actions. Also, X is called symmetric, if a.x = x.«v
foralla e Y and =z € X.

Throughout this paper H,,«(.A) will denotes the space of all bounded
module homomorphisms from A to A that are w*-continuous.

Definition 2.3. Let A = (A,)* be a dual Banach algebra, ¢ € H,«(A)
and let that X be a dual Banach A-bimodule. A bounded map D, :
A — X is called a module ¢-derivation if for every a,b € A and
a, 3 €U, we have

Du(oz‘aj:bﬂ) = O[.D(/{(CL):':D[/{(Z)).B, Du(@b) = Du(a)@(b)‘l’(p(a)Du(b)
When X is symmetric, each € X defines a module p-derivation

(Du)a(a) = ola).x —z.0(a)  (a€A)
Derivations of this form are called inner module @-derivation.

Definition 2.4. Let A be a dual Banach algebra, U be a Banach
algebra such that A is a Banach U-module and ¢ € H,(A). A is
called ¢-Connes module amenable if for any symmetric normal Banach
A-U-module X, each w*-continuous module p-derivation D;, : A — X
is inner.

Theorem 2.5. Let A and U be dual Banach algebras, let A be a uni-
tal dual Banach U-module and let A has an id-module normal virtual
diagonal. Then A is id-Connes module amenable.

Proof. Let X be a symmetric normal Banach A-U-module. We first
note that A has an identity. It is therefore sufficient for A to be id-
Connes module amenable that we suppose that X is unital. 0

Remark 2.6. In Theorem 2.5 it is shown that if a unital Banach algebra
A has an ¢d-module normal virtual diagonal, then A is id-Connes mod-
ule amenable. Let S be a semigroup, it would be interesting to know
that the converse holds for inverse semigroup algebra {*(S). Thus for
an inverse semigroup .S, we consider an equivalence relation on S where
s ~ t if and only if there is ¢ € E such that se = te. The quotient semi-
group Sg = £ is a group [3]. Also, F is a symmetric subsemigroup of S.
Therefore, ['(S) is a Banach ['(E)-module with compatible canonical
actions. Let ['(E) acts on [*(S) via

58‘6.5:587 58'562556268*56 (SES,(BEE).

The following theorem is the main result of this paper.
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Theorem 2.7. Let S be a weakly cancellative inverse semigroup with
idempotents E. let I'(S) be a Banach I'(E)- module and let x €
Ho-(11(S)). If11(S) is x-Connes module amenable, then there exists a
x-module normal virtual diagonal for I*(.S).

Proof. Let m : S — Sg be the quotient map. By [!, Lemma 3.2|, we
define a bimodule action of I'(S) on [*(Sg) by

0.8 = On(s) ¥ T,  T.05 = T % Or(y) (s €S,z el™(Sq)).
This completes the proof. U

Theorem 2.8. Let S be a weakly cancellative semigroup with tdem-
potents E and let I'(S) be a unital dual Banach I'(E)-module. More-
over, let I'(S)®u(p) - - Qu(pyl'(S) be a dual Banach I'(E)-module and

n times n times

X € Hw* (ll(S)) Then ll(S)®ll(E) e @ll(E)ll(S) 18 S<®l1(E) s ®l1(E)>€_
Connes module amenable if and only if I'(S) is x-Connes module amenable.

Example 2.9. Let (N, V) be the semigroup of positive integers with
maximum operation. Since N is weakly cancellative, then ['(N) is a
dual Banach algebra with predual ¢y(N). By [2, Theorem 5.13], I*(N)
is not Connes amenable. So, it is Connes module amenable.

3. CONCLUSION

In this paper we show that if S is a weakly cancellative inverse semi-
group with idempotents E and y is a bounded module homomorphism
from [1(.9) to itself, then I*(S) has y-module normal virtual diagonal.
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