

CHARACTERIZATION ON χ -CONNES MODULE AMENABILITY FOR SEMIGROUP ALGEBRAS

EBRAHIM TAMIMI *

Department of Mathematics, Velayat University, P. O. Box 9917638733, Iranshahr, Iran. e.tamimi@velayat.ac.ir

ABSTRACT. We investigate χ -Connes module amenability for semigroup algebras, where χ is a module homomorphism on semigroup algebra that is continuous with respect to ω^* -topology and S is an inverse weakly cancellative semigroup. Also, we study the notion of χ -module normal, virtual diagonals in semigroup algebras. Other hereditary properties in this direction are also obtained.

1. Introduction

In [1], Amini introduced the concept of module amenability for Banach algebras, and proved that when S is an inverse semigroup with subsemigroup E of idempotents, then $l^1(S)$ as a Banach module over $U = l^1(E)$ is module amenable if and only if S is amenable. We may refer the reader e.g. to [1, 4, 5], for more informations. In this paper, we study the concept of χ -Connes module amenability and give a characterization of χ -Connes module amenability in terms of χ -modul normal virtual diagonals.

 $^{2010\} Mathematics\ Subject\ Classification.$ Primary 43A20; Secondary 43A10, 22D15.

Key words and phrases. χ -Connes module amenable, χ -module normal virtual diagonal, inverse semigroup algebra, weakly cancellative semigroup.

^{*} Speaker.

TAMIMI

2. Main results

Let S be a semigroup. Then S is named cancellative semigroup, if for every $r, s \neq t \in S$ we have $rs \neq rt$ and $sr \neq tr$.

A discrete semigroup S is called an inverse semigroup if for each $x \in S$ there is a unique element $x^* \in S$ such that $xx^*x = x$ and $x^*xx^* = x^*$. An element $e \in S$ is called an idempotent if $e = e^* = e^2$. The set of idempotent elements of S is denoted by S. For $S \in S$, we define S is S is S by S

Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a dual Banach algebra, and \mathcal{U} be a Banach algebra such that \mathcal{A} is a Banach \mathcal{U} -bimodule via,

$$\alpha.(ab) = (\alpha.a).b, \quad (\alpha\beta).a = \alpha.(\beta.a) \qquad (a, b \in \mathcal{A}, \alpha, \beta \in \mathcal{U}).$$

Let I be the closed ideal of $\mathcal{A} \widehat{\otimes} \mathcal{A}$ generated by elements of the form $\alpha.(a \otimes b) - (a \otimes b).\alpha$, for $a, b \in \mathcal{A}$ and $\alpha \in \mathcal{U}$. $\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{A}$ is defined to be the quitiont Banach space $\frac{\mathcal{A} \widehat{\otimes} \mathcal{A}}{I}$.

Let J be the closed ideal of \mathcal{A} generated by elements of the form $(\alpha.a).b - a.(b.\alpha)$. In this paper we let that $\mathcal{L}^2_{\omega^*}(\frac{\mathcal{A}}{J}, \mathbb{C})$ denote the separately ω^* -continuous two-linear maps from $\frac{\mathcal{A}}{J} \times \frac{\mathcal{A}}{J}$ to \mathbb{C} , $\tilde{\omega}^* : \mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{A} \to \frac{\mathcal{A}}{J}$ be the multiplication operator with $\tilde{\omega}(a \otimes b + I) = ab + J$ and $\tilde{\varphi} : \frac{\mathcal{A}}{J} \to \frac{\mathcal{A}}{J}$ be the map that is defined by $\tilde{\varphi}(a + J) = \varphi(a) + J$, $a \in \mathcal{A}$.

Definition 2.1. Let \mathcal{A} be a dual Banach algebra. A module homomorphism from \mathcal{A} to \mathcal{A} is a map $\varphi : \mathcal{A} \to \mathcal{A}$ with

$$\varphi(\alpha.a+b.\beta) = \alpha.\varphi(a) + \varphi(b).\beta, \quad \varphi(ab) = \varphi(a)\varphi(b) \quad (a,b \in \mathcal{A}, \alpha, \beta \in \mathcal{U}).$$

Definition 2.2. Let \mathcal{A} be a dual Banach algebra and $\varphi: \mathcal{A} \to \mathcal{A}$ be a bounded ω^* -continuous module homomorphism. An element $M \in \mathcal{L}^2_{\omega^*}(\frac{\mathcal{A}}{J},\mathbb{C})^*$ is called a φ -module normal virtual diagonal for \mathcal{A} if $\tilde{\omega}^{**}(M)$ is an identity for $\frac{\varphi(\mathcal{A})}{J}$ and $M.\tilde{\varphi}(c+J) = \tilde{\varphi}(c+J)$ where $c \in \mathcal{A}$.

Let X be a dual Banach \mathcal{A} -bimodule. X is called normal if for each $x \in X$, the maps

$$\mathcal{A} \to X$$
; $a \to a.x$, $a \to x.a$

are ω^* -continuous. If moreover X is a \mathcal{U} -bimodule such that for $a \in \mathcal{A}$, $\alpha \in \mathcal{U}$ and $x \in X$

$$\alpha.(a.x) = (\alpha.a).x, \quad (a.\alpha).x = a.(\alpha.x), \quad (\alpha.x).a = \alpha.(x.a),$$

then X is called a normal Banach left A- \mathcal{U} -module. Similarly for the right and two sided actions. Also, X is called symmetric, if $\alpha.x = x.\alpha$ for all $\alpha \in \mathcal{U}$ and $x \in X$.

Throughout this paper $\mathcal{H}_{\omega^*}(\mathcal{A})$ will denotes the space of all bounded module homomorphisms from \mathcal{A} to \mathcal{A} that are ω^* -continuous.

Definition 2.3. Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a dual Banach algebra, $\varphi \in \mathcal{H}_{\omega^*}(\mathcal{A})$ and let that X be a dual Banach \mathcal{A} -bimodule. A bounded map $D_{\mathcal{U}} : \mathcal{A} \to X$ is called a module φ -derivation if for every $a, b \in \mathcal{A}$ and $\alpha, \beta \in \mathcal{U}$, we have

$$D_{\mathcal{U}}(\alpha.a \pm b.\beta) = \alpha.D_{\mathcal{U}}(a) \pm D_{\mathcal{U}}(b).\beta, \quad D_{\mathcal{U}}(ab) = D_{\mathcal{U}}(a).\varphi(b) + \varphi(a).D_{\mathcal{U}}(b).$$

When X is symmetric, each $x \in X$ defines a module φ -derivation

$$(D_{\mathcal{U}})_x(a) = \varphi(a).x - x.\varphi(a)$$
 $(a \in \mathcal{A}).$

Derivations of this form are called inner module φ -derivation.

Definition 2.4. Let \mathcal{A} be a dual Banach algebra, \mathcal{U} be a Banach algebra such that \mathcal{A} is a Banach \mathcal{U} -module and $\varphi \in \mathcal{H}_{\omega^*}(\mathcal{A})$. \mathcal{A} is called φ -Connes module amenable if for any symmetric normal Banach \mathcal{A} - \mathcal{U} -module X, each ω^* -continuous module φ -derivation $D_{\mathcal{U}}: \mathcal{A} \to X$ is inner.

Theorem 2.5. Let \mathcal{A} and \mathcal{U} be dual Banach algebras, let \mathcal{A} be a unital dual Banach \mathcal{U} -module and let \mathcal{A} has an id-module normal virtual diagonal. Then \mathcal{A} is id-Connes module amenable.

Proof. Let X be a symmetric normal Banach $\mathcal{A}\text{-}\mathcal{U}\text{-}$ module. We first note that \mathcal{A} has an identity. It is therefore sufficient for \mathcal{A} to be id-Connes module amenable that we suppose that X is unital. \square

Remark 2.6. In Theorem 2.5 it is shown that if a unital Banach algebra \mathcal{A} has an id-module normal virtual diagonal, then \mathcal{A} is id-Connes module amenable. Let S be a semigroup, it would be interesting to know that the converse holds for inverse semigroup algebra $l^1(S)$. Thus for an inverse semigroup S, we consider an equivalence relation on S where $s \sim t$ if and only if there is $e \in E$ such that se = te. The quotient semigroup $S_G = \frac{S}{S}$ is a group [3]. Also, E is a symmetric subsemigroup of S. Therefore, $l^1(S)$ is a Banach $l^1(E)$ -module with compatible canonical actions. Let $l^1(E)$ acts on $l^1(S)$ via

$$\delta_e.\delta_s = \delta_s, \quad \delta_s.\delta_e = \delta_{se} = \delta_s * \delta_e \qquad (s \in S, e \in E).$$

The following theorem is the main result of this paper.

Theorem 2.7. Let S be a weakly cancellative inverse semigroup with idempotents E. let $l^1(S)$ be a Banach $l^1(E)$ - module and let $\chi \in \mathcal{H}_{\omega^*}(l^1(S))$. If $l^1(S)$ is χ -Connes module amenable, then there exists a χ -module normal virtual diagonal for $l^1(S)$.

Proof. Let $\pi: S \to S_G$ be the quotient map. By [1, Lemma 3.2], we define a bimodule action of $l^1(S)$ on $l^{\infty}(S_G)$ by

$$\delta_s.x = \delta_{\pi(s)} * x, \quad x.\delta_s = x * \delta_{\pi(s)} \quad (s \in S, x \in l^{\infty}(S_G)).$$

This completes the proof.

Theorem 2.8. Let S be a weakly cancellative semigroup with idempotents E and let $l^1(S)$ be a unital dual Banach $l^1(E)$ -module. Moreover, let $l^1(S) \widehat{\otimes}_{l^1(E)} \cdots \widehat{\otimes}_{l^1(E)} l^1(S)$ be a dual Banach $l^1(E)$ -module and

 $\chi \in \mathcal{H}_{\omega^*}(l^1(S))$. Then $l^1(S) \widehat{\otimes}_{l^1(E)} \cdots \widehat{\otimes}_{l^1(E)} l^1(S)$ is $\chi \widehat{\otimes}_{l^1(E)} \cdots \widehat{\otimes}_{l^1(E)} \chi$ Connes module amenable if and only if $l^1(S)$ is χ -Connes module amenable.

Example 2.9. Let (\mathbb{N}, \vee) be the semigroup of positive integers with maximum operation. Since \mathbb{N} is weakly cancellative, then $l^1(\mathbb{N})$ is a dual Banach algebra with predual $c_0(\mathbb{N})$. By [2, Theorem 5.13], $l^1(\mathbb{N})$ is not Connes amenable. So, it is Connes module amenable.

3. Conclusion

In this paper we show that if S is a weakly cancellative inverse semi-group with idempotents E and χ is a bounded module homomorphism from $l^1(S)$ to itself, then $l^1(S)$ has χ -module normal virtual diagonal.

REFERENCES

- 1. M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69 (2004), 243254.
- 2. M. Daws, Connes amenability of bidual and weighted semigroup algebras, Math. Scand. 99 (2006), 217246.
- 3. W.D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc. 5 (1961), 4148.
- 4. E. Tamimi and A. Ghaffari, A survey on χ -module Connes amenability of semi-group algebras, Journal of Algebraic Systems, accepted (for 2025).
- 5. E. Tamimi and A. Ghaffari, On $\chi \otimes \eta$ -strong Connes amenability of certain dual Banach algebras, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 31 (2024), no. 1, 1-19.