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Abstract. In this paper, we define φ-Connes module amenability of a dual Banach
algebra A, where φ is a ω∗-continuous bounded module homomorphism from A onto
itself. We obtain the relation between φ-Connes module amenability of A and φ-splitting
of the certain short exact sequence. We show that if S is a weakly cancellative inverse
semigroup with subsemigroup ES of idempotents and l1(S) as a Banach module over
l1(ES) is χ-Connes module amenable, then the short exact sequence is χ-splitting that χ
is a ω∗-continuous bounded module homomorphism from l1(S) onto itself. Other results
in this direction are also obtained.
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1. Introduction
Ghaffari and Javadi in [4], investigated φ-Connes amenability for dual Banach alge-

bras and semigroup algebras, where φ was an homomorphism from a Banach algebra on
C. Also, the χ⊗ η-strong Connes amenability of certain dual Banach algebras is investi-
gated by Tamimi and Ghaffari in [11]. Also in [5], Ghaffari et al. investigated φ-Connes
module amenability of dual Banach algebras that φ is a ω∗-continuous bounded module
homomorphism from a Banach algebra on itself. χ-module Connes amenability of semi-
group algebras is studied by the authors in [10]. What is the relation between φ-splitting
and φ-Connes module amenability, where φ is ω∗-continuous homomorphism from Banach
algebra to itself ? Motivated by above question and [9], to study φ-Connes amenability
and φ-splitting. We recall that for Banach algebra A, the projective tensor product A⊗̂A
is a Banach A-bimodule in the canonical way. Now, we define the map A-bimodule ho-
momorphism π : A⊗̂A −→ A by π(a⊗ b) = ab. A Banach A-bimodule E is dual if there
is a closed submodule E∗ ⊆ E∗, predual of E, such that E = (E∗)

∗. A dual Banach
A-bimodule E is normal if the module actions of A on E are ω∗-continuous. A Banach
algebra is dual if it is dual as a Banach A-bimodule. Let A = (A∗)

∗ be a dual Banach
algebra and let E be a Banach A-bimodule. Then σwc(E), a closed submodule of E,

∗Speaker
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stands for the set of all elements x ∈ E such that the following maps are ω∗-ω continuous

A −→ E; a 7−→ a.x, a 7−→ x.a.

The Banach A-bimodules E that are relevant to us are those the left action is of the
form a.x = φ(a)x. For the brevity’s sake, such E will occasionally be called a Banach
φ-bimodule.
Throughout the paper, ∆(A) and ∆ω∗(A) will denote the sets of all homomorphisms and
ω∗-continuous homomorphisms from the Banach algebra A onto C, respectively. Ghaffari
and Javadi in [4], investigated ϕ-Connes amenability for dual Banach algebras, where ϕ
is an homomorphism from a Banach algebra on C. Also, several characterizations of χ̂-
Connes amenability of semigroup algebras were introduced by these two authors, where χ
is a nonzero bounded continuous character on unital weakly cnacellative semigroup S and
the map χ̂ is defined on semigroup algebra l1(S). Weak module amenability for semigroup
algebras is studied by Amini and Ebrahimi bagha in [1]. Recently, in [5], Ghaffari et
al. investigated φ-Connes module amenability of dual Banach algebras that ψ is a ω∗-
continuous bounded module homomorphism from a Banach algebra on itself. In [2], the
concept of module amenability for Banach algebras is introduced. Also, it is proved that
when S is an inverse semigroup with subsemigroup ES of idempotents, then l1(S) as a
Banach module over U = l1(ES) is module amenable if and only if S is amenable. For
more information and details of module amenability, we may refer the reader to [2, 10].
Ghaffari et al. studied dual of group algebras under a locally convex topology [7]. In fact,
we give a characterization of φ-Connes module amenability of a dual Banach algebra in
terms of so-called φ-splitting of the certain short exact sequences (Theorem 3.3). Also,
the mentioned concepts and details are shown for semigroup algebras in Theorem 4.4.
In Theorem 3.4, by letting that A and B are φ and ψ-Connes module amenable Banach
algebras respectively, that both of φ : A → A and ψ : B → B, are ω∗-continuous bounded
module homomorphisms, we show that this property is transferred from A and B to the
special tensor product of their. In finally, it is presented a corollary and an example in
this direction.

2. Preliminary Notations
Let A be a Banach algebra, and let E be a Banach A-bimodule. A derivation from A

to E is a bounded, linear map D : A → E satisfying D(ab) = a.D(b) +D(a).b (a, b ∈ A).
A derivation D : A → E is called inner if there is x ∈ E such that Da = a.x−x.a (a ∈ A).

Definition 2.1. Let A be a Banach algebra, and let 3 ≤ n ∈ N. A sequence

A1
φ1→ A2

φ2→ ....
φn−1−→ An

of A-bimodules A1,A2, ...,An and A-bimodule homomorphisms φi : Ai → Ai+1 for i ∈
{2, ..., n − 1} is called exact at position i = 2, ..., n − 1 if φi−1 = kerφi. It is called exact
if it is exact at every position i ∈ {2, ..., n− 1}.

We restrict ourselves to exact sequences with few bimodules, and a few bimodules
(short exact sequences) respectively. Therefore, an exact sequence of the following form

0 → A1
φ→ A2

ψ→ A3 → 0

is called a short exact sequence.
In the following we define the admissible and splitting short exact sequences.
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Definition 2.2. Let A be a Banach algebra. A short exact sequence

Θ : 0 → A1
φ1→ A2

φ2→ ...
φn−1−→ An → 0

of Banach A-bimodules A1,A2, ...,An and A-bimodule homomorphisms φi : Ai → Ai+1

for i = 1, 2, ...n − 1 is admissible, if there exists a bounded linear map ρi : Ai+1 → Ai

such that ρioφi on Ai for i = 1, 2, ...n− 1 is the identity map. Further, Θ splits if we may
choose ρi to be an A-bimodule homomorphism.

Definition 2.3. Let A = (A∗)
∗ be an unital dual Banach algebra, and let φ ∈

∆ω∗(A)∩A∗. We say that
∑
φ-splits if there exists a bounded linear map ρ : σwc((A⊗̂A)∗) →

A∗ such that ρoπ∗(φ) = φ and ρ(T.a) = φ(a)ρ(T ), for all a ∈ A and T ∈ σwc((A⊗̂A)∗).

Definition 2.4. Let A be a dual Banach algebra, and let φ ∈ ∆ω∗(A) ∩ A∗. An
element M ∈ σwc((A⊗̂A)∗)∗ is a φ-σwc virtual diagonal for A if
(i) a.M = φ(a)M, (a ∈ A);
(ii) 〈φ⊗ φ,M〉 = 1.

In throughout this paper, let ⊗ω stand for the injective tensor product of Banach
algebras.
We consider the following short exact sequences, which have three non-zero terms:∑

φ

: 0 → A∗
π∗
A−→ σwc(A⊗̂A)∗ → σwc(A⊗̂A)∗/π∗A(A∗) → 0,

∑
ψ

: 0 → B∗
π∗
B−→ σwc(B⊗̂B)∗ → σwc(B⊗̂B)∗/π∗B(B∗) → 0

and∑
φ⊗ψ

: 0 → A∗⊗ωB∗
π∗
A⊗̂B−→ σwc((A⊗̂B)⊗̂(A⊗̂B))∗ → σwc((A⊗̂B)⊗̂(A⊗̂B))∗/π∗A⊗̂B(A∗⊗ωB∗) → 0.

Definition 2.5. ( [4, Definition 2.1]) Let A be a dual Banach algebra and φ ∈
∆(A) ∩ A∗. A is φ-Connes amenable if for every normal φ-bimodule E, every bounded
ω∗-continuous derivation D : A → E is inner.

3. φ-Connes module amenability and φ-splitting
In this section our main aim is investigation of the relation between notions of φ-

Connes module amenability of dual Banach algebras and φ-splitting of the short exact
sequences. Also, we discuss some hereditary properties of φ-Connes module amenability.
The following definitions are analogue to [5,10].
Let A = (A∗)

∗ be a dual Banach algebra, and U be a Banach algebra such that A is a
Banach U -bimodule via,

α.(ab) = (α.a).b, (αβ).a = α.(β.a) (a, b ∈ A, α, β ∈ U).

Let E be a dual Banach A-bimodule. E is called normal if for each x ∈ E, the maps
A → E; a→ a.x, a→ x.a

are ω∗- continuous. If moreover E is a U -bimodule such that for a ∈ A, α ∈ U and x ∈ E

α.(a.x) = (α.a).x, (a.α).x = a.(α.x), (α.x).a = α.(x.a),
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then E is called a normal Banach left A-U -module. Similarly for the right and two sided
actions. Also, E is called commutative, if

α.x = x.α (α ∈ U , x ∈ E).

A module homomorphism from A∗ to A∗ is a map φ : A∗ → A∗ with
φ(α.a+ b.β) = α.φ(a) + φ(b).β, φ(ab) = φ(a)φ(b) (a, b ∈ A∗, α, β ∈ U).

It is obvious that multiplication in A is ω∗-continuous. Consider A∗ as dual A∗-module
with predual A∗. So, we shall suppose that A∗ takes ω∗-topology. HOMb

ω∗(A∗) will
denotes the space of all bounded module homomorphisms from A∗ to A∗ that are ω∗-
continuous.

Now, in the following we present some definitions.

Definition 3.1. ( [5], P. 71) Let A = (A∗)
∗ be a dual Banach algebra, φ ∈ HOMb

ω∗(A∗).
let E be a dual Banach A∗-bimodule. A bounded map DU : A∗ → E is called a module
φ-derivation if
DU (α.a±b.β) = α.DU (a)±DU (b).β, DU (ab) = DU (a).φ(b)+φ(a).DU (b), (a, b ∈ A∗, α, β ∈ U).

When E is commutative, each x ∈ E defines a module φ-derivation
(DU )x(a) = φ(a).x− x.φ(a) (a ∈ A∗).

Derivations of this form are called inner module φ-derivation.

Definition 3.2. ( [5], P. 71) Let A∗ be a dual Banach algebra, U be a Banach algebra
such that A∗ is a Banach U -module and φ ∈ HOMb

ω∗(A∗). A∗ is called φ-Connes module
amenable if for any commutative normal Banach A∗-U -module E, each ω∗-continuous
module φ-derivation DU : A∗ → E is inner.

Recall that if φ is identity map on A, then id-Connes module amenability is called
Connes module amenability. Also, by the proof of [2, Proposition 2.1], Connes amenability
of A implies its Connes module amenability in the case where U has a bounded approximate
identity for A. In continuation, example 4.6 shows that the converse is false.

Theorem 3.3. Let A∗ be a dual Banach algebra and φ ∈ HOMb
ω∗(A∗). Then A∗ is

φ-Connes module amenable if and only if the short exact sequence Σφ φ-splits.

Proof. Let A∗ be φ-Connes module amenable and E be a commutative normal Ba-
nach A∗-U -module and DU : A∗ → E be an inner ω∗-continuous module φ-derivation.
Without loss of generality, suppose that A∗ is unital and φ(eA∗) = eA∗ . This completes
the proof.
For the converse suppose that φ ∈ HOMb

ω∗(A∗) and the short exact sequence Σφ φ-splits.
A is φ-Connes amenable. Thertefore A is φ-Connes module amenable. □

Suppose that A,B and U be dual Banach algebras such that A and B be dual Banach
U -modules and A⊗̂B denotes the projective tensor product of A and B. Let I be the closed
ideal of A⊗̂B generated by elements of the form α.(a⊗ b)− (a⊗ b).α for a ∈ A, b ∈ B and
α ∈ U . A⊗̂UB is defined to be the quitiont Banach space A⊗̂B

I , that is, A⊗̂UB ∼= A⊗̂B
I [8].

Let A,B be commutative Banach U -bimodules and let φ ∈ HOMω∗(A), ψ ∈ HOMb
ω∗(B).

Consider A⊗̂UB with the product specified by (a⊗b)(c⊗d) = ac⊗bd (a, c ∈ A, b, d ∈ B).
Let φ⊗ ψ denotes the elements of HOMb

ω∗(A⊗̂B) satisfying φ⊗ ψ(a⊗ b) = φ(a)⊗ ψ(b)
for all a ∈ A, b ∈ B. φ⊗ψ induces a map φ⊗U ψ ∈ HOMb

ω∗(A⊗̂UB) with φ⊗U ψ(a⊗b) =
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φ(a)⊗ ψ(b) + I [3].
By above details, we obtain the following theorem.

Theorem 3.4. Let A,B and U be dual Banach algebras, let A,B be unital dual
Banach U- modules and let A⊗̂UB be a dual Banach algebra and φ ∈ HOMb

ω∗(A),
ψ ∈ HOMb

ω∗(B). If A,B are φ,ψ-Connes module amenable respectively, then A⊗̂UB
is φ⊗̂Uψ-Connes module amenable.

Theorem 3.5. Let A,B and U be dual Banach algebras, let A,B be unital dual
Banach U- modules and let A⊗̂UB be a dual Banach algebra and φ ∈ HOMb

ω∗(A),
ψ ∈ HOMb

ω∗(B). A⊗̂UB is φ⊗̂Uψ-Connes module amenable if and only if the short exact
sequences Σφ⊗̂Uψ

φ⊗̂Uψ-splits.

4. Application
In this section by considering module homomorphisms on semigroup algebras, we inves-

tigate φ-splitting for notions of Connes module amenability and the short exact sequences.
The following definitions are analogue to [5,10].

A discrete semigroup S is called an inverse semigroup if for each t ∈ S there is a unique
element t∗ ∈ S such that tt∗t = t and t∗tt∗ = t∗. The set of idempotent elements of S is
denoted by ES = {e ∈ S; e = e∗ = e2}.

Remark 4.1. Let S be an inverse semigroup. For s ∈ S, we define Ls, Rs : S → S by
Ls(t) = st, Rs(t) = ts, (t ∈ S). If for each s ∈ S, Ls and Rs are finite-to-one maps, then we
say that S is weakly cancellative. We know that if S is a weakly cancellative semigroup,
then (c0(S))

∗ = l1(S).
Definition 4.2. Let S be a weakly cancellative semigroup, S be an inverse semigroup

with idempotents ES . Let χ ∈ HOMb
ω∗(l1(S)) and l1(S) be a Banach l1(ES)-module. An

element M ∈ σwc((l1(S)⊗̂l1(S))∗)∗ is a χ− σwc- virtual diagonal for l1(S) if
δs.M = χ(δs)M, 〈χ⊗ χ,M〉 = 1, (δs ∈ l1(S)).

Let l1(S) = (l1(S)∗)
∗ be an unital dual Banach algebra. Then we consider the following

short exact sequence of l1(S) -bimodules,∑
χ

: 0 −→ l1(S)∗
π∗
χ−→ σwc((l1(S)⊗̂l1(S))∗) −→ σwc((l1(S)⊗̂l1(S))∗)/π∗χ(l1(S)∗) −→ 0

Now, we present an important definition.
Definition 4.3. Let S be a weakly cancellative inverse semigroup. Let l1(S) =

(c0(S))
∗ be an unital dual Banach algebra, and let χ ∈ HOMb

ω∗(l1(S)). We say that
∑

χ χ-
splits if there exists a bounded linear map ρ : σwc((l1(S)⊗̂l1(S))∗) → l1(S)∗ = c0(S) such
that ρoπ∗χ(χ) = χ and ρ(T.δs) = χ(δs)ρ(T ), for all δs ∈ l1(S), T ∈ σwc((l1(S)⊗̂l1(S))∗)
and π∗χ : l1(S)⊗ l1(S) → l1(S).

Theorem 4.4. Let S be a weakly cancellative semigroup, let S be an inverse semigroup
with idempotents ES , χ ∈ HOMb

ω∗(l1(S)) and let l1(S) be a Banach l1(ES)-module. Then
l1(S) is χ-Connes module amenable if and only if the short exact sequences Σχ χ-splits.

Corollary 4.5. Let S be a weakly cancellative semigroup, let S be an inverse semi-
group with idempotents ES and let l1(S) be a Banach l1(ES)-module. Then l1(S) is Connes
module amenable if and only if the short exact sequences Σχ=id splits.
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Example 4.6. Let (N;∨ : N → N) be the semigroup of natural numbers with maximum
operation. We know that N is weakly cancellative, because

Ls : N → N, Ls(n) = sn and Rs : N → N, Rs(n) = ns; (n ∈ N),
are not one to one. Then l1(N) is a dual Banach algebra that (c0(N))∗ = l1(N). l1(N)
is not Connes amenable. Moreover, l1(N) is module amenable on l1(EN), so it is Connes
module amenable. Suppose that M is a χ − σwc- virtual diagonal for l1(N). Now if we
define ρ : σwc((l1(N)⊗̂l1(N))∗) → l1(N)∗ by

〈δn, ρ(T )〉 = 〈T.δn,M〉,
(
n ∈ N, δn ∈ l1(N), T ∈ σwc((l1(N)⊗̂l1(N))∗)

)
We obtain

〈δn, ρoπ∗χ(χ)〉 = 〈π∗χ(χ).δn,M〉 = 〈π∗χ(χ), δn.M〉 = χ(δn)〈π∗χ(χ),M〉 = χ(δn).

Next for m,n ∈ N, δn, δm ∈ l1(N) we have
〈δm, ρ(T.δn)〉 = 〈T.δnδm,M〉 = 〈T, δnδm.M〉 = χ(δnδm)〈T,M〉

= χ(δn)〈T, δm.M〉 = χ(δn)〈T.δm,M〉 = χ(δn)〈δm, ρ(T )〉.
All in all, the short exact sequences Σχ=id splits.

Corollary 4.7. Let S be a weakly cancellative semigroup, let S be an inverse semi-
group with idempotents ES and let l1(S) be a Banach l1(ES)-module. Then l1(S)⊗ l1(S) is
χ⊗ η Connes module amenable if and only if the short exact sequences Σχ⊗η χ⊗ η-splits.

5. Conclusion
In this paper, we studied the relation between φ-splitting and φ-Connes module

amenability, where φ is a ω∗-continuous bounded module homomorphism from Banach
algebra A onto A. Also, by considering that S is a weakly cancellative semigroup, then
we obtain similar results for semigroup algebras l1(S) and l1(S)⊗ l1(S).
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