

On φ -Connes Module Amenability of Dual Banach Algebras and φ -splitting

Ebrahim Tamimi^{1,*}

¹Department of Mathematics, Velayat University, Iranshahr, Iran; e.tamimi@velayat.ac.ir

ABSTRACT. In this paper, we define φ -Connes module amenability of a dual Banach algebra \mathcal{A} , where φ is a ω^* -continuous bounded module homomorphism from \mathcal{A} onto itself. We obtain the relation between φ -Connes module amenability of \mathcal{A} and φ -splitting of the certain short exact sequence. We show that if S is a weakly cancellative inverse semigroup with subsemigroup E_S of idempotents and $l^1(S)$ as a Banach module over $l^1(E_S)$ is χ -Connes module amenable, then the short exact sequence is χ -splitting that χ is a ω^* -continuous bounded module homomorphism from $l^1(S)$ onto itself. Other results in this direction are also obtained.

Keywords: φ - σwc virtual diagonal, φ -Connes module amenability, φ -splitting, short exact sequence, semigroup algebra, weakly cancellative semigroup

AMS Mathematics Subject Classification [2010]: 46J10, 43A22, 22D15

1. Introduction

Ghaffari and Javadi in [4], investigated φ -Connes amenability for dual Banach algebras and semigroup algebras, where φ was an homomorphism from a Banach algebra on \mathbb{C} . Also, the $\chi \otimes \eta$ -strong Connes amenability of certain dual Banach algebras is investigated by Tamimi and Ghaffari in [11]. Also in [5], Ghaffari et al. investigated φ -Connes module amenability of dual Banach algebras that φ is a ω^* -continuous bounded module homomorphism from a Banach algebra on itself. χ -module Connes amenability of semigroup algebras is studied by the authors in [10]. What is the relation between φ -splitting and φ -Connes module amenability, where φ is ω^* -continuous homomorphism from Banach algebra to itself? Motivated by above question and [9], to study φ -Connes amenability and φ -splitting. We recall that for Banach algebra \mathcal{A} , the projective tensor product $\mathcal{A} \widehat{\otimes} \mathcal{A}$ is a Banach \mathcal{A} -bimodule in the canonical way. Now, we define the map \mathcal{A} -bimodule homomorphism $\pi: \mathcal{A} \otimes \mathcal{A} \longrightarrow \mathcal{A}$ by $\pi(a \otimes b) = ab$. A Banach \mathcal{A} -bimodule E is dual if there is a closed submodule $E_* \subseteq E^*$, predual of E, such that $E = (E_*)^*$. A dual Banach \mathcal{A} -bimodule E is normal if the module actions of \mathcal{A} on E are ω^* -continuous. A Banach algebra is dual if it is dual as a Banach \mathcal{A} -bimodule. Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a dual Banach algebra and let E be a Banach A-bimodule. Then $\sigma wc(E)$, a closed submodule of E,

^{*}Speaker

stands for the set of all elements $x \in E$ such that the following maps are $\omega^* - \omega$ continuous

$$\mathcal{A} \longrightarrow E; \quad a \longmapsto a.x, \ a \longmapsto x.a.$$

The Banach \mathcal{A} -bimodules E that are relevant to us are those the left action is of the form $a.x = \varphi(a)x$. For the brevity's sake, such E will occasionally be called a Banach φ -bimodule.

Throughout the paper, $\Delta(\mathcal{A})$ and $\Delta_{\omega^*}(\mathcal{A})$ will denote the sets of all homomorphisms and ω^* -continuous homomorphisms from the Banach algebra \mathcal{A} onto \mathbb{C} , respectively. Ghaffari and Javadi in [4], investigated ϕ -Connes amenability for dual Banach algebras, where ϕ is an homomorphism from a Banach algebra on \mathbb{C} . Also, several characterizations of $\hat{\chi}$ -Connes amenability of semigroup algebras were introduced by these two authors, where χ is a nonzero bounded continuous character on unital weakly cnacellative semigroup S and the map $\hat{\chi}$ is defined on semigroup algebra $l^1(S)$. Weak module amenability for semigroup algebras is studied by Amini and Ebrahimi bagha in [1]. Recently, in [5], Ghaffari et al. investigated φ -Connes module amenability of dual Banach algebras that ψ is a ω^* continuous bounded module homomorphism from a Banach algebra on itself. In [2], the concept of module amenability for Banach algebras is introduced. Also, it is proved that when S is an inverse semigroup with subsemigroup E_S of idempotents, then $l^1(S)$ as a Banach module over $\mathcal{U} = l^1(E_S)$ is module amenable if and only if S is amenable. For more information and details of module amenability, we may refer the reader to [2, 10]. Ghaffari et al. studied dual of group algebras under a locally convex topology [7]. In fact, we give a characterization of φ -Connes module amenability of a dual Banach algebra in terms of so-called φ -splitting of the certain short exact sequences (Theorem 3.3). Also, the mentioned concepts and details are shown for semigroup algebras in Theorem 4.4. In Theorem 3.4, by letting that \mathcal{A} and \mathcal{B} are φ and ψ -Connes module amenable Banach algebras respectively, that both of $\varphi: \mathcal{A} \to \mathcal{A}$ and $\psi: \mathcal{B} \to \mathcal{B}$, are ω^* -continuous bounded module homomorphisms, we show that this property is transferred from \mathcal{A} and \mathcal{B} to the special tensor product of their. In finally, it is presented a corollary and an example in this direction.

2. Preliminary Notations

Let \mathcal{A} be a Banach algebra, and let E be a Banach A-bimodule. A derivation from \mathcal{A} to E is a bounded, linear map $D : \mathcal{A} \to E$ satisfying D(ab) = a.D(b) + D(a).b $(a, b \in \mathcal{A})$. A derivation $D : \mathcal{A} \to E$ is called inner if there is $x \in E$ such that Da = a.x - x.a $(a \in \mathcal{A})$.

DEFINITION 2.1. Let \mathcal{A} be a Banach algebra, and let $3 \leq n \in \mathbb{N}$. A sequence

$$\mathcal{A}_1 \stackrel{\varphi_1}{\rightarrow} \mathcal{A}_2 \stackrel{\varphi_2}{\rightarrow} \stackrel{\varphi_{n-1}}{\longrightarrow} \mathcal{A}_n$$

of \mathcal{A} -bimodules $\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_n$ and \mathcal{A} -bimodule homomorphisms $\varphi_i : \mathcal{A}_i \to \mathcal{A}_{i+1}$ for $i \in \{2, ..., n-1\}$ is called exact at position i = 2, ..., n-1 if $\varphi_{i-1} = ker\varphi_i$. It is called exact if it is exact at every position $i \in \{2, ..., n-1\}$.

We restrict ourselves to exact sequences with few bimodules, and a few bimodules (short exact sequences) respectively. Therefore, an exact sequence of the following form

$$0 \to \mathcal{A}_1 \xrightarrow{\varphi} \mathcal{A}_2 \xrightarrow{\psi} \mathcal{A}_3 \to 0$$

is called a short exact sequence.

In the following we define the admissible and splitting short exact sequences.

DEFINITION 2.2. Let \mathcal{A} be a Banach algebra. A short exact sequence

$$\Theta: 0 \to \mathcal{A}_1 \xrightarrow{\varphi_1} \mathcal{A}_2 \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_{n-1}} \mathcal{A}_n \to 0$$

of Banach \mathcal{A} -bimodules $\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_n$ and \mathcal{A} -bimodule homomorphisms $\varphi_i : \mathcal{A}_i \to \mathcal{A}_{i+1}$ for i = 1, 2, ..., n - 1 is admissible, if there exists a bounded linear map $\rho_i : \mathcal{A}_{i+1} \to \mathcal{A}_i$ such that $\rho_i o \varphi_i$ on \mathcal{A}_i for i = 1, 2, ..., n - 1 is the identity map. Further, Θ splits if we may choose ρ_i to be an \mathcal{A} -bimodule homomorphism.

DEFINITION 2.3. Let $\mathcal{A} = (\mathcal{A}_*)^*$ be an unital dual Banach algebra, and let $\varphi \in$ $\Delta_{\omega^*}(\mathcal{A}) \cap \mathcal{A}_*$. We say that $\sum \varphi$ -splits if there exists a bounded linear map $\rho : \sigma wc((\mathcal{A} \widehat{\otimes} \mathcal{A})^*) \to \mathcal{A}_*$. \mathcal{A}_* such that $\rho o \pi^*(\varphi) = \varphi$ and $\rho(T.a) = \varphi(a)\rho(T)$, for all $a \in \mathcal{A}$ and $T \in \sigma wc((\mathcal{A} \widehat{\otimes} \mathcal{A})^*)$.

DEFINITION 2.4. Let \mathcal{A} be a dual Banach algebra, and let $\varphi \in \Delta_{\omega^*}(\mathcal{A}) \cap \mathcal{A}_*$. An element $M \in \sigma wc((\mathcal{A}\widehat{\otimes}\mathcal{A})^*)^*$ is a φ - σwc virtual diagonal for \mathcal{A} if (i) $a.M = \varphi(a)M$, $(a \in \mathcal{A});$ $(ii) \quad \langle \varphi \otimes \varphi, M \rangle = 1.$

In throughout this paper, let \otimes_{ω} stand for the injective tensor product of Banach algebras.

We consider the following short exact sequences, which have three non-zero terms:

$$\sum_{\varphi} : 0 \to \mathcal{A}_* \xrightarrow{\pi_{\mathcal{A}}^*} \sigma wc(\mathcal{A}\widehat{\otimes}\mathcal{A})^* \to \sigma wc(\mathcal{A}\widehat{\otimes}\mathcal{A})^*/\pi_{\mathcal{A}}^*(\mathcal{A}_*) \to 0,$$
$$\sum_{\psi} : 0 \to \mathcal{B}_* \xrightarrow{\pi_{\mathcal{B}}^*} \sigma wc(\mathcal{B}\widehat{\otimes}\mathcal{B})^* \to \sigma wc(\mathcal{B}\widehat{\otimes}\mathcal{B})^*/\pi_{\mathcal{B}}^*(\mathcal{B}_*) \to 0$$

and

$$\sum_{\varphi \otimes \psi} : 0 \to \mathcal{A}_* \otimes_\omega \mathcal{B}_* \xrightarrow{\pi^*_{\mathcal{A}\widehat{\otimes}\mathcal{B}}} \sigma wc((\mathcal{A}\widehat{\otimes}\mathcal{B})\widehat{\otimes}(\mathcal{A}\widehat{\otimes}\mathcal{B}))^* \to \sigma wc((\mathcal{A}\widehat{\otimes}\mathcal{B})\widehat{\otimes}(\mathcal{A}\widehat{\otimes}\mathcal{B}))^*/\pi^*_{\mathcal{A}\widehat{\otimes}\mathcal{B}}(\mathcal{A}_* \otimes_\omega \mathcal{B}_*) \to 0.$$

DEFINITION 2.5. ([4, Definition 2.1]) Let \mathcal{A} be a dual Banach algebra and $\varphi \in$ $\Delta(\mathcal{A}) \cap \mathcal{A}_*$. \mathcal{A} is φ -Connes amenable if for every normal φ -bimodule E, every bounded ω^* -continuous derivation $D: \mathcal{A} \to E$ is inner.

3. φ -Connes module amenability and φ -splitting

In this section our main aim is investigation of the relation between notions of φ -Connes module amenability of dual Banach algebras and φ -splitting of the short exact sequences. Also, we discuss some hereditary properties of φ -Connes module amenability. The following definitions are analogue to [5, 10].

Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a dual Banach algebra, and \mathcal{U} be a Banach algebra such that \mathcal{A} is a Banach \mathcal{U} -bimodule via,

$$\alpha.(ab) = (\alpha.a).b, \quad (\alpha\beta).a = \alpha.(\beta.a) \qquad (a, b \in \mathcal{A}, \alpha, \beta \in \mathcal{U}).$$

Let E be a dual Banach A-bimodule. E is called normal if for each $x \in E$, the maps

 $\mathcal{A} \to E; \qquad a \to a.x,$ $a \rightarrow x.a$

are ω^* - continuous. If moreover E is a \mathcal{U} -bimodule such that for $a \in \mathcal{A}, \alpha \in \mathcal{U}$ and $x \in E$

$$\alpha.(a.x) = (\alpha.a).x, \quad (a.\alpha).x = a.(\alpha.x), \quad (\alpha.x).a = \alpha.(x.a),$$

then E is called a normal Banach left \mathcal{A} - \mathcal{U} -module. Similarly for the right and two sided actions. Also, E is called commutative, if

$$\alpha . x = x . \alpha \qquad (\alpha \in \mathcal{U}, x \in E).$$

A module homomorphism from \mathcal{A}_* to \mathcal{A}_* is a map $\varphi : \mathcal{A}_* \to \mathcal{A}_*$ with

$$\varphi(\alpha.a+b.\beta) = \alpha.\varphi(a) + \varphi(b).\beta, \quad \varphi(ab) = \varphi(a)\varphi(b) \quad (a,b \in \mathcal{A}_*, \alpha, \beta \in \mathcal{U}).$$

It is obvious that multiplication in \mathcal{A} is ω^* -continuous. Consider \mathcal{A}_* as dual \mathcal{A}_* -module with predual \mathcal{A}_* . So, we shall suppose that \mathcal{A}_* takes ω^* -topology. $\mathcal{HOM}^b_{\omega^*}(\mathcal{A}_*)$ will denotes the space of all bounded module homomorphisms from \mathcal{A}_* to \mathcal{A}_* that are ω^* -continuous.

Now, in the following we present some definitions.

DEFINITION 3.1. ([5], P. 71) Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a dual Banach algebra, $\varphi \in \mathcal{HOM}^b_{\omega^*}(\mathcal{A}_*)$. let E be a dual Banach \mathcal{A}_* -bimodule. A bounded map $D_{\mathcal{U}} : \mathcal{A}_* \to E$ is called a module φ -derivation if

$$D_{\mathcal{U}}(\alpha.a\pm b.\beta) = \alpha.D_{\mathcal{U}}(a)\pm D_{\mathcal{U}}(b).\beta, \quad D_{\mathcal{U}}(ab) = D_{\mathcal{U}}(a).\varphi(b)+\varphi(a).D_{\mathcal{U}}(b), \quad (a,b\in\mathcal{A}_*,\alpha,\beta\in\mathcal{U}).\varphi(ab) = D_{\mathcal{U}}(ab)$$

When E is commutative, each $x \in E$ defines a module φ -derivation

$$(D_{\mathcal{U}})_x(a) = \varphi(a).x - x.\varphi(a) \qquad (a \in \mathcal{A}_*).$$

Derivations of this form are called inner module φ -derivation.

DEFINITION 3.2. ([5], P. 71) Let \mathcal{A}_* be a dual Banach algebra, \mathcal{U} be a Banach algebra such that \mathcal{A}_* is a Banach \mathcal{U} -module and $\varphi \in \mathcal{HOM}^b_{\omega^*}(\mathcal{A}_*)$. \mathcal{A}_* is called φ -Connes module amenable if for any commutative normal Banach \mathcal{A}_* - \mathcal{U} -module E, each ω^* -continuous module φ -derivation $D_{\mathcal{U}} : \mathcal{A}_* \to E$ is inner.

Recall that if φ is identity map on \mathcal{A} , then *id*-Connes module amenability is called Connes module amenability. Also, by the proof of [2, Proposition 2.1], Connes amenability of \mathcal{A} implies its Connes module amenability in the case where \mathcal{U} has a bounded approximate identity for \mathcal{A} . In continuation, example 4.6 shows that the converse is false.

THEOREM 3.3. Let \mathcal{A}_* be a dual Banach algebra and $\varphi \in \mathcal{HOM}^b_{\omega^*}(\mathcal{A}_*)$. Then \mathcal{A}_* is φ -Connes module amenable if and only if the short exact sequence $\Sigma_{\varphi} \varphi$ -splits.

PROOF. Let \mathcal{A}_* be φ -Connes module amenable and E be a commutative normal Banach \mathcal{A}_* - \mathcal{U} -module and $D_{\mathcal{U}} : \mathcal{A}_* \to E$ be an inner ω^* -continuous module φ -derivation. Without loss of generality, suppose that \mathcal{A}_* is unital and $\varphi(e_{\mathcal{A}_*}) = e_{\mathcal{A}_*}$. This completes the proof.

For the converse suppose that $\varphi \in \mathcal{HOM}^b_{\omega^*}(\mathcal{A}_*)$ and the short exact sequence $\Sigma_{\varphi} \varphi$ -splits. \mathcal{A} is φ -Connes amenable. Therefore \mathcal{A} is φ -Connes module amenable.

Suppose that \mathcal{A}, \mathcal{B} and \mathcal{U} be dual Banach algebras such that \mathcal{A} and \mathcal{B} be dual Banach \mathcal{U} -modules and $\mathcal{A} \widehat{\otimes} \mathcal{B}$ denotes the projective tensor product of \mathcal{A} and \mathcal{B} . Let I be the closed ideal of $\mathcal{A} \widehat{\otimes} \mathcal{B}$ generated by elements of the form $\alpha.(a \otimes b) - (a \otimes b).\alpha$ for $a \in \mathcal{A}, b \in \mathcal{B}$ and $\alpha \in \mathcal{U}. \ \mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B}$ is defined to be the quitiont Banach space $\frac{\mathcal{A} \widehat{\otimes} \mathcal{B}}{I}$, that is, $\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B} \cong \frac{\mathcal{A} \widehat{\otimes} \mathcal{B}}{I}$ [8].

Let \mathcal{A}, \mathcal{B} be commutative Banach \mathcal{U} -bimodules and let $\varphi \in \mathcal{HOM}_{\omega^*}(\mathcal{A}), \psi \in \mathcal{HOM}_{\omega^*}^b(\mathcal{B})$. Consider $\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B}$ with the product specified by $(a \otimes b)(c \otimes d) = ac \otimes bd$ $(a, c \in \mathcal{A}, b, d \in \mathcal{B})$. Let $\varphi \otimes \psi$ denotes the elements of $\mathcal{HOM}_{\omega^*}^b(\mathcal{A} \widehat{\otimes} \mathcal{B})$ satisfying $\varphi \otimes \psi(a \otimes b) = \varphi(a) \otimes \psi(b)$ for all $a \in \mathcal{A}, b \in \mathcal{B}$. $\varphi \otimes \psi$ induces a map $\varphi \otimes_{\mathcal{U}} \psi \in \mathcal{HOM}_{\omega^*}^b(\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B})$ with $\varphi \otimes_{\mathcal{U}} \psi(a \otimes b) = \varphi(a) \otimes \psi(b)$ $\varphi(a) \otimes \psi(b) + I$ [3].

By above details, we obtain the following theorem.

THEOREM 3.4. Let \mathcal{A}, \mathcal{B} and \mathcal{U} be dual Banach algebras, let \mathcal{A}, \mathcal{B} be unital dual Banach \mathcal{U} - modules and let $\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B}$ be a dual Banach algebra and $\varphi \in \mathcal{HOM}^{b}_{\omega^*}(\mathcal{A})$, $\psi \in \mathcal{HOM}^{b}_{\omega^*}(\mathcal{B})$. If \mathcal{A}, \mathcal{B} are φ, ψ -Connes module amenable respectively, then $\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B}$ is $\varphi \widehat{\otimes}_{\mathcal{U}} \psi$ -Connes module amenable.

THEOREM 3.5. Let \mathcal{A}, \mathcal{B} and \mathcal{U} be dual Banach algebras, let \mathcal{A}, \mathcal{B} be unital dual Banach \mathcal{U} - modules and let $\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B}$ be a dual Banach algebra and $\varphi \in \mathcal{HOM}^{b}_{\omega^*}(\mathcal{A})$, $\psi \in \mathcal{HOM}^{b}_{\omega^*}(\mathcal{B})$. $\mathcal{A} \widehat{\otimes}_{\mathcal{U}} \mathcal{B}$ is $\varphi \widehat{\otimes}_{\mathcal{U}} \psi$ -Connes module amenable if and only if the short exact sequences $\Sigma_{\varphi \widehat{\otimes}_{\mathcal{U}} \psi} \ \varphi \widehat{\otimes}_{\mathcal{U}} \psi$ -splits.

4. Application

In this section by considering module homomorphisms on semigroup algebras, we investigate φ -splitting for notions of Connes module amenability and the short exact sequences. The following definitions are analogue to [5, 10].

A discrete semigroup S is called an inverse semigroup if for each $t \in S$ there is a unique element $t^* \in S$ such that $tt^*t = t$ and $t^*tt^* = t^*$. The set of idempotent elements of S is denoted by $E_S = \{e \in S; e = e^* = e^2\}$.

REMARK 4.1. Let S be an inverse semigroup. For $s \in S$, we define $L_s, R_s : S \to S$ by $L_s(t) = st, R_s(t) = ts, (t \in S)$. If for each $s \in S, L_s$ and R_s are finite-to-one maps, then we say that S is weakly cancellative. We know that if S is a weakly cancellative semigroup, then $(c_0(S))^* = l^1(S)$.

DEFINITION 4.2. Let S be a weakly cancellative semigroup, S be an inverse semigroup with idempotents E_S . Let $\chi \in \mathcal{HOM}^b_{\omega^*}(l^1(S))$ and $l^1(S)$ be a Banach $l^1(E_S)$ -module. An element $M \in \sigma wc((l^1(S) \otimes l^1(S))^*)^*$ is a $\chi - \sigma wc$ - virtual diagonal for $l^1(S)$ if

$$\delta_s.M = \chi(\delta_s)M, \quad \langle \chi \otimes \chi, M \rangle = 1, \qquad (\delta_s \in l^1(S)).$$

Let $l^1(S) = (l^1(S)_*)^*$ be an unital dual Banach algebra. Then we consider the following short exact sequence of $l^1(S)$ -bimodules,

$$\sum_{\chi} : 0 \longrightarrow l^{1}(S)_{*} \xrightarrow{\pi_{\chi}^{*}} \sigma wc((l^{1}(S)\widehat{\otimes}l^{1}(S))^{*}) \longrightarrow \sigma wc((l^{1}(S)\widehat{\otimes}l^{1}(S))^{*})/\pi_{\chi}^{*}(l^{1}(S)_{*}) \longrightarrow 0$$

Now, we present an important definition.

DEFINITION 4.3. Let S be a weakly cancellative inverse semigroup. Let $l^1(S) = (c_0(S))^*$ be an unital dual Banach algebra, and let $\chi \in \mathcal{HOM}^b_{\omega^*}(l^1(S))$. We say that $\sum_{\chi} \chi$ -splits if there exists a bounded linear map $\rho : \sigma wc((l^1(S)\hat{\otimes}l^1(S))^*) \to l^1(S)_* = c_0(S)$ such that $\rho \sigma \pi^*_{\chi}(\chi) = \chi$ and $\rho(T.\delta_s) = \chi(\delta_s)\rho(T)$, for all $\delta_s \in l^1(S)$, $T \in \sigma wc((l^1(S)\hat{\otimes}l^1(S))^*)$ and $\pi^*_{\chi} : l^1(S) \otimes l^1(S) \to l^1(S)$.

THEOREM 4.4. Let S be a weakly cancellative semigroup, let S be an inverse semigroup with idempotents E_S , $\chi \in \mathcal{HOM}^{b}_{\omega^*}(l^1(S))$ and let $l^1(S)$ be a Banach $l^1(E_S)$ -module. Then $l^1(S)$ is χ -Connes module amenable if and only if the short exact sequences $\Sigma_{\chi} \chi$ -splits.

COROLLARY 4.5. Let S be a weakly cancellative semigroup, let S be an inverse semigroup with idempotents E_S and let $l^1(S)$ be a Banach $l^1(E_S)$ -module. Then $l^1(S)$ is Connes module amenable if and only if the short exact sequences $\Sigma_{\chi=id}$ splits. EXAMPLE 4.6. Let $(\mathbb{N}; \vee : \mathbb{N} \to \mathbb{N})$ be the semigroup of natural numbers with maximum operation. We know that \mathbb{N} is weakly cancellative, because

 $L_s: \mathbb{N} \to \mathbb{N}, \ L_s(n) = sn \ and \ R_s: \mathbb{N} \to \mathbb{N}, \ R_s(n) = ns; \ (n \in \mathbb{N}),$

are not one to one. Then $l^1(\mathbb{N})$ is a dual Banach algebra that $(c_0(\mathbb{N}))^* = l^1(\mathbb{N})$. $l^1(\mathbb{N})$ is not Connes amenable. Moreover, $l^1(\mathbb{N})$ is module amenable on $l^1(E_{\mathbb{N}})$, so it is Connes module amenable. Suppose that M is a $\chi - \sigma wc$ - virtual diagonal for $l^1(\mathbb{N})$. Now if we define $\rho : \sigma wc((l^1(\mathbb{N}) \widehat{\otimes} l^1(\mathbb{N}))^*) \to l^1(\mathbb{N})_*$ by

$$\langle \delta_n, \rho(T) \rangle = \langle T.\delta_n, M \rangle, \qquad \left(n \in \mathbb{N}, \delta_n \in l^1(\mathbb{N}), T \in \sigma wc((l^1(\mathbb{N})\widehat{\otimes} l^1(\mathbb{N}))^*) \right)$$

We obtain

$$\langle \delta_n, \rho o \pi_{\chi}^*(\chi) \rangle = \langle \pi_{\chi}^*(\chi) . \delta_n, M \rangle = \langle \pi_{\chi}^*(\chi), \delta_n . M \rangle = \chi(\delta_n) \langle \pi_{\chi}^*(\chi), M \rangle = \chi(\delta_n)$$

Next for $m, n \in \mathbb{N}, \delta_n, \delta_m \in l^1(\mathbb{N})$ we have

$$\langle \delta_m, \rho(T, \delta_n) \rangle = \langle T, \delta_n \delta_m, M \rangle = \langle T, \delta_n \delta_m, M \rangle = \chi(\delta_n \delta_m) \langle T, M \rangle$$

 $=\chi(\delta_n)\langle T,\delta_m.M\rangle=\chi(\delta_n)\langle T.\delta_m,M\rangle=\chi(\delta_n)\langle\delta_m,\rho(T)\rangle.$

All in all, the short exact sequences $\Sigma_{\chi=id}$ splits.

COROLLARY 4.7. Let S be a weakly cancellative semigroup, let S be an inverse semigroup with idempotents E_S and let $l^1(S)$ be a Banach $l^1(E_S)$ -module. Then $l^1(S) \otimes l^1(S)$ is $\chi \otimes \eta$ Connes module amenable if and only if the short exact sequences $\Sigma_{\chi \otimes \eta} \chi \otimes \eta$ -splits.

5. Conclusion

In this paper, we studied the relation between φ -splitting and φ -Connes module amenability, where φ is a ω^* -continuous bounded module homomorphism from Banach algebra \mathcal{A} onto \mathcal{A} . Also, by considering that S is a weakly cancellative semigroup, then we obtain similar results for semigroup algebras $l^1(S)$ and $l^1(S) \otimes l^1(S)$.

References

- M. Amini and D. Ebrahimi Bagha, Weak module amenability for semigroup algebras, Semigroup Forum, 71 (2005), 18-26.
- 2. M. Amini, Module amenability for semigroup algebras, Semigroup Forum, 69 (2004), 243-254.
- 3. H. G. Dales, *Banach algebras and automatic continuity*, London Math. Soc. Monogr. ser, Clarendon Press, 2000.
- A. Ghaffari and S. Javadi, φ-Connes amenability of dual Banach algebras, Bull. Iranian Math. Soc. 43 (2017), 25–39.
- A. Ghaffari, S. Javadi and E. Tamimi, φ-Connes module amenability of dual Banach algebras, Journal of Algebraic Systems, 8(1) (2020), 69-82.
- A. Ghaffari, S. Javadi and E. Tamimi, Connes Amenability for Certain Product of Banach Algebras, Wavelets and Linear Algebra, 9(1) (2022), 1-14.
- A. Ghaffari, M. Sheibani, E Tamimi, On dual of group algebras under a locally convex topology, Journal of Advanced Mathematical Modeling (JAMM), 13 (2023), no.2 1-9.
- M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Func. Analysis, 1 (1967), 443–491.
- 9. V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer Verlag, Berlin, 2002.
- E. Tamimi and A. Ghaffari, A Survey on χ-module Connes amenability of semigroup algebras, Journal of Algebraic Systems, 29 (2023), Accepted to Online Publish. https://doi.org/10.21203/rs.3.rs-2676837/v1
- E. Tamimi and A. Ghaffari, On χ ⊗ η-strong Connes amenability of certain dual Banach algebras, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 31 (2024), no. 1, Accepted, https://doi.org/10.7468/jksmeb.2024.31.1.**