Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method

AuthorsB. Dizangian-M.R. Ghasemi
JournalStructural Engineering and Mechanics
Page number613
Volume number77
IF3.524
Paper TypeOriginal Research
Published At2021-03-10
Journal GradeISI
Journal TypeElectronic
Journal CountryKorea

Abstract

In this paper, an enhanced Violation-based Sensitivity analysis and Border-Line Adaptive Sliding Technique (ViS-BLAST) will be utilized for optimization of some well-known structural and mechanical engineering problems. ViS-BLAST has already been introduced by the authors for solving truss optimization problems. For those problems, this method showed a satisfactory enactment both in speed and efficiency. The Enriched ViS-BLAST or EVB is introduced to be vastly applicable to any solvable constrained optimization problem without any specific initialization. It uses one-directional step-wise searching technique and mostly limits exploration to the vicinity of FNF border and does not explore the entire design space. It first enters the feasible region very quickly and keeps the feasibility of solutions. For doing this important, EVB groups variables for specifying the desired searching directions in order to moving toward best solutions out or inside feasible domains. EVB was employed for solving seven numerical engineering design problems. Results show that for problems with tiny or even complex feasible regions with a larger number of highly non-linear constraints, EVB has a better performance compared to some records in the literature. This dominance was evaluated in terms of the feasibility of solutions, the quality of optimum objective values found and the total number of function evaluations performed.

Paper URL

tags: Optimization