Authors | A. Naderi - M.R. Sohrabi - M.R. Ghasemi - B. Dizangian |
---|---|
Journal | Engineering with Computers |
IF | 3.938 |
Paper Type | Full Paper |
Published At | 2020-1-22 |
Journal Grade | ISI |
Journal Type | Typographic |
Journal Country | Germany |
Abstract
In this study, a novel two-stage approach for damage detection of determinate truss structures is proposed. The method lies in the group of vibration-based methods but it just needs the first natural frequency and mode shape vector of these structures for identifying the location and severity of damage. In the first stage, the modal residual force vector for different modes of a structure is introduced and the one associated with the first mode is applied to the structure as an external nodal force vector. Then, the residual local nodal force vector can be computed for all elements of the structure. Next, the elements with non-zero residual internal force are considered as damaged elements. In the second stage, the damage severity of each damaged element is determined using a new relation which can be categorized as a force–displacement relation. To show the efficiency and simplicity of the proposed method, three truss structures including a 13-bar planar truss, a 29-bar planar truss, and a 77-bar planar truss under different damage scenarios are studied; the results of which indicate that the method is innovatively capable of suitably detecting, for determinate truss structures, not only damaged members but also their individual damage severity by carrying solely one analysis.